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Abstract. Estimating the impacts of a major storm on property values is a timely issue in

light of many recent weather events in North America. For example, a storm leading to an ex-

tended water-boil advisory in only some sub-areas is an example of a treatment e�ect problem

with missing data that we consider in this application of the storm's commercial property value

impacts. One does not know what the treated properties would have sold for if they had been

untreated, which implies missing data. First, we extend an Inverse Probability Tilting (IPT)

estimator and develop a nonparametric, geographically-weighted IPT (GIPT) estimator. GIPT

allows for average treatment e�ect (ATE) heterogeneity across geographic space, and addresses

�missing data� problems with geographic data. GIPT re-weights twice: using propensity scores

that equate moments across treated (and untreated) sub-samples with the entire sample, as in

IPT; and also, down-weighting observations far from each target point. This allows for heteroge-

neous ATE estimates. Monte Carlo simulations validate the strong small sample performance of

GIPT. Among many possible applications of GIPT, we demonstrate how a severe storm leading

to an extended water-boil advisory, imposed much longer on sub-sections of Metro-Vancouver

Canada (the �treatment�), impacted individual commercial property prices di�erently.
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1. Introduction

Estimating the impacts of major storms on property values is a timely issue in light of many

recent weather events in North America. As a speci�c example, a storm leading to a water boil

advisory on some geographic locations but not others is an example of a treatment e�ect problem

with missing data that we consider in this application of how the storm impacts commercial

property values. The researcher does not know what the treated properties would have sold for

if they were untreated, which is one source of missing data. We consider a speci�c application

of this type of missing data problem with a severe storm that hit the Metropolitan Vancouver,

BC Canada area in November 2006. This storm led to a 12-day water boil advisory imposed on

some parts of the Metro area, but the advisory was lifted after one day in other nearby areas.

In our application, we are able to apply a generalization of Inverse Probability Tilting (IPT),

to account for the missing data problem and also allow for treatment e�ect heterogeneity.

Two increasingly popular areas of focus in recent applied statistical research are average

treatment e�ect (ATE) heterogeneity, and missing data problems. Our methodology addresses

both of these issues in one framework, when there are data available on the geographic locations

of observations.

One set of approaches to missing data problems in general settings is propensity score ap-

proaches. There is an extensive body of literature on Inverse Probability Weighting (IPW), as

in Rosenbaum and Rubin (1983) and followed by Imbens (2004) and Wooldridge (2007). More

recently, Graham et al (2012) developed a methods-of-moments based approach called Inverse

Probability Tilting (IPT).

Some recent research has focused on speci�c types of missing data problems and some have

addressed them with methods-of-moments approaches. For instance, Abrevaya and Donald

(forthcoming) consider a situation where some observations on an explanatory variable are

missing, and they develop a methods-of-moments estimator to handle this problem.

One objective of this paper is to address a second adjustment for missing data problems as a

part of the estimation strategy in our application. Speci�cally, we generalize the IPT estimator
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to allow for re-weighting for geographic heterogeneity in a cross sectional context, in addition

to a propensity score approach for the missing data problem. The attractive features of IPT

that we describe below have prompted us to explore this generalization of IPT. This type of

additional spatial adjustment is important in the context of many treatment e�ect problems,

because the ATE at one geographic location can be di�erent than the ATEs at other locations.

In particular, the issue of ATE heterogeneity has received some recent attention. While one

advantage of IPT is that it leads to a unique treatment e�ect for each observation, it may also

be desirable to consider spatial heterogeneity in a nonparametric framework that could lead to

di�erent ATEs across each individual observation. Bitler et al (forthcoming) demonstrate that

using constant mean-impacts in the treated versus untreated subgroups ignores much of the

heterogeneity in these two subgroups. In such situations, an approach to deal with the missing

data problem while preserving heterogeneity in ATEs across geographic locations is desirable.

Thus, a second objective of our research is to demonstrate how a general version of the IPT

approach that considers geographic variation in the data can address the missing data problem

while at the same time allowing for heterogeneity in the ATEs across geographic space.

One particular application of IPT is commercial property sales, where a treatment is imposed

on some properties in a geographic region, but neither on others in the same region nor upon any

properties in a neighboring region. With this particular missing data problem, the researcher

knows what price a treated property sold for, but does not know how much the same property

would have sold for if it had been untreated. The treatment e�ect might vary across di�erent

locations. While this is the speci�c application that we consider in this paper, there are many

other potential applications of our generalization of IPT, in contexts where there is geographical

variation in the data and a treatment that is imposed on units in some locations after a random

event, but not in others.

In the remainder of this paper, we �rst motivate one type of missing data problem (although

our estimator can be applicable to a broad range of other missing data problems). Next we

explain the generalizations to the IPT estimator that incorporate geographic heterogeneity, and

the adjustments to the propensity score weights made to allow for more distant observations
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to be down-weighted relative to more close observations. We call this generalization a GIPT

estimator (representing �Geographically-weighted Inverse Probability Tilting�). We describe

the computation process of the GIPT estimator, then provide some Monte Carlo evidence to

demonstrate that the estimator performs well. We apply this GIPT estimator to the case of

how commercial property prices in the metro-Vancouver, BC Canada region may be impacted

di�erently, shortly before versus after a storm leading to an extended water-boil advisory that

is imposed on some parts of the region for much longer than other areas. Finally, we discuss

potential future extensions to this approach and summarize our �ndings.

2. Motivation

Consider the following general problem. First, suppose one is interested in analyzing a data

set on units that are in various locations throughout a particular geographic region, to determine

the ATEs at each location in the region shortly after versus shortly before a random �event�.

If the treatment area is con�ned to a particular city in a metro area, for instance, we might

consider focusing attention on �treated� observations as a set of those that are on the �inside�

of the city limits after the �event� . The �untreated� observations are a set of units that are on

the �outside� of the city limits, e.g., those observations in a neighboring city, before and after

the �event� as well as a set of those within the city limits before the �event� . Then, we can

estimate the e�ect of being in the treatment sub-sample opposed to the non-treated sub-sample,

assuming that there are no missing data.

But we know for many empirical applications that the treatment is observed contingent on

the location of the observations. In other words, it is not known what the treatment outcome

would have been if a particular unit had been untreated. In these cases, in order to obtain

valid treatment e�ects, one can re-weight the data with propensity scores. There are several

approaches to accomplishing this. One is an Inverse Probability Weighting (IPW) approach,

which has received extensive attention in the literature (see, e.g., Rosenbaum and Rubin (1983),

and Imbens (2004), among others). IPW uses Maximum Likelihood estimation techniques to

obtain the propensity score weighting parameters. An attractive alternative is the IPT approach,
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as in Graham et al (2012), which is based on a relatively straightforward moments condition

technique. An advantage of IPT is that it generates separate tilting parameters for the treated

and untreated samples. There are alternative missing data approaches that have been proposed

by others, such as random forests (Wager and Athey, 2017), and some methods closely related

to IPT (e.g., Imai and Ratkovic, 2014, and Hainmueller, 2012), among others. A comparison

of many of these approaches is presented in Frölich et al (2017), however there is no known

analysis of GIPT in the literature. Incorporating the spatial variation into the missing data

literature is one main contribution of our paper.

Speci�cally, the IPT and IPW approaches do not allow for geographic heterogeneity in the

ATEs and the tilting parameters. If the geographic locations of observations are varied, this

could be an important consideration in many particular applications. While it may be possible

to include geographic coordinates directly as control variables in the IPT estimation, this would

violate the �strong overlap� assumption of Graham et al (2012). Therefore, as an attractive

alternative to including geographic coordinates directly as IPT control variables, it may be

helpful to re-weight a second time, to consider the geographic distance between observations.

This is common in the non-parametric estimation literature, speci�cally, with an approach called

Locally Weighted Regressions (LWR), also commonly referred to as Geographically Weighted

Regressions (GWR), as in Brunsdon et al (1996). McMillen and Redfearn (2010) describe LWR

and present an application. However, no known work has incorporated geographically weighted

estimation into an IPT framework.

3. Approach

3.1. Model. Suppose that there are N units, indexed by i = 1, . . . ,N, viewed as drawn

randomly from a large population. We postulate the existence for each unit of a pair of potential

outcomes, Yi(0) for the outcome under the control treatment and Yi(1) for the outcome under

the active treatment. In addition, each unit has a vector of covariates, pretreatment variables

or exogenous variables, Zi, and vector of covariates for its geographic location, Li. Also let

Xi = {Zi, Li}. Each unit is exposed to a single treatment; Di = 0 if unit i is untreated and
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Di = 1 if unit i receives the active treatment. We therefore observe for each unit the triple

(Di, Yi, Xi), where Yi is the realized outcome:

Yi ≡ Yi(Di) =


Yi(0) if Di = 0,

Yi(1) if Di = 1.

Distributions of (Di, Yi, Xi) refer to the distribution induced by the random sampling from the

population. We follow the potential outcomes of Neyman (1923) and Rubin (1974) , assuming

the existence of potential outcomes, Y (1) and Y (0), corresponding respectively to the outcome

the subject at a speci�c location would have experienced with or without treatment. Then we

can de�ne the average treatment e�ect (ATE) at l as

γ(l) = E[Y (1)− Y (0)|L = l].

In practice, however, one only observes

Yi = (1−Di)Yi(0) +DiYi(1)

i.e., only Yi(1) for actively treated units or Yi(0) for untreated units are observed at any given

location. One common assumption needed for estimation in this case is the following:

Assumption 1. (Unconfoundedness) {Y (1), Y (0)} ⊥ D|X.

This assumption e�ectively implies that we can treat nearby observations in each geographic

location as having come from a randomized experiment. It follows immediately that the ATE

at location l, γ(l), can be identi�ed as

γ(L = l) = E [E [Y |D = 1, X]− E [Y |D = 0, X] |L = l]

or equivalently
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(3.1) γ(L = l) = E

[
DY

p(X)
− (1−D)Y

1− p(X)
|L = l

]
where p(X) = P [D = 1|X = x] = E[Di|Xi = x] is the propensity score function that prescribes

the conditional probability of receiving treatment at x (which is a generalization of the setup in

Rosenbaum and Rubin, 1983). As this propensity score function is generally unknown, many

earlier methods on average treatment e�ect estimation di�er in how they estimate p(X) using,

e.g., variants of maximum likelihood approaches, such as the Inverse Probability Weighting

(IPW) estimator that we describe in the next section, and then plug p(X) in equation (3.1) to

calculate an average treatment e�ect.

3.2. Geographically Weighted Inverse Probability Tilting Estimator (GIPT). Rosen-

baum and Rubin (1983) proposed the Inverse Probability Weighting ATE estimator by �rst

replacing the p(X) with a maximim likelihood estimator, then averaging over sample points.

The Rosenbaum and Rubin (1983) setup implicitly assumes no variation in l across observa-

tions. Graham et al (2012) proposed an alternative method by estimating the propensity score

function with a particular method of moments estimator consisting of two separate tilting pa-

rameters - two sets of propensity scores - one set for each observation in the treatment group

and another for observations in the control group. Our method of estimating the geographically

speci�c average treatment e�ects is based on a generalization of the IPT estimator proposed by

Graham et al (2012) and it requires the following assumptions 2 through 8 below, in addition

to assumption 1 above (the unconfoundedness assumption).

Assumption 2. (Random Sampling). {Di,Xi, Y1i}Ni=1 is an independently and identically dis-

tributed random sequence. We observe D, X, and Y = DY1 for each sampled unit.

Assumption 3. (Identi�cation) For some known K × 1 vector of functions Φ(Y,X, γ),

E(Φ(Y,X, γ)) = 0
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with (i) E(Φ(Y,X, γ)) 6= 0 for all γ 6= γ0, γ ∈ Θ ⊂ RK, and Θ compact with γ0 ∈ int(Θ),(ii)

|Φ(Y,X, γ)| ≤ c(Y,X) for all Y,X with c(·) a non-negative function and E(c(Y,X)) <∞, (iii)

Φ(Y,X, γ) is continuous on Θ for each Y,X and continuously di�erentiable in a neighborhood

of γ0, (iv) E[‖Φ(Y,X, γ)‖2] <∞, and (v) E[supγ∈Θ ‖∇γΦ(Y,X, γ)‖] <∞.

Assumption 4. (Strong Overlap) p(X) = P [D = 1|X = x] is bounded away from 0 and 1 over

ℵ, the support of X.

Assumption 5. There is a continuous function δ0(·) and compact, known vector r(X) of lin-

early independent functions of X, and known function G(·)such that (i) G(·) is strictly increas-

ing, continuously di�erentiable, and maps into the unit interval with limν→−∞G(ν) = 0 and

limν→∞G(ν) = 1, (ii) p(x) = G (r(z)′δ0(l)) for all x ∈ ℵ, and (iii) G(r(z)′δ0(l)) is bounded

away from 0 and 1 for δ0(·) and x ∈ ℵ.

Geographically weighted regressions (GWR) is a commonly used non-parametric estimation

procedure in spatial studies to allow for geographic heterogeneity in regression parameters over

space, when missing data is not an issue. In other words, this approach leads to the possibility

of di�erent marginal e�ects at each target point. The basic idea behind GWR is to assign

higher weights to observations near the target point when calculating a point speci�c estimate.

The measure of distance between observations has a natural geographic interpretation in spa-

tial modeling. The GWR approach is readily extended to Maximum-Likelihood Estimation

(MLE) methods as well. While a typical MLE procedure chooses estimates to maximize the

log-likelihood function, the geographically weighted version of MLE estimates a pseudo log-

likelihood function, where the log-likelihood function depends on the functional form of the

regression model. See McMillen and McDonald (2004), for more details.

We incorporate Geographical weights into the IPT estimator from Graham et al (2012),

in the following way. We modify equation (A.22) in Graham et al (2012) by incorporat-

ing kernel weights and a bandwidth parameter. If the researcher believes that the poten-

tial outcome function G(·) is a non-parametric function, then we could transform both t(·)

and Di with some kernel weights. More speci�cally, suppose one is interested in the �rst
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two moments (although one can include additional moments). Then, we denote τ(wi(l)xi) =

[1, wi(l)xi, (wi(l)xi)
2, · · · (wi(l)xi)

m, ]′, as a column vector where the weight wi(l) =
[
K
(
di(l)
b

)]1/2

, with K(·) being the Gaussian kernel, b being the bandwidth parameter, m is the number of

moments included, and di(l) being the geographic distance between observations i and location

L = l. This setup amounts to a non-parametric speci�cation of the tilting parameters, δ0(l)

and δ1(l) , as de�ned below.

Speci�cally, suppose, for computational simplicity, one allows G to take the Logit functional

form, that is, G(v) = exp(v)/[1 + exp(v)], and φv = 1/G(v). In terms of computation of δ̃h(l),

h = 0, 1, ..., H, for each target observation, where H is the number of treatment groups and 0

represents the control group, the GIPT estimator solves the following optimization problem,

adapted from equation (A.22) of Graham et al (2012), to incorporate spatial heterogeneity

across target points:

Choose δh(l) to max L(δh(l)) = (1/N)
∑

iD
h
i w(l)φh(τ(w(l)xi)

′δh(l))�(1/N)
∑

iτ(w(l)xi)
′δh(l)

where Dh
i is the treatment dummy for group h and φh are speci�c to group h. If there is one

treatment and a control group, then h = 0, 1, and the notation for these dummies would reduce

to (1−D) and D, respectively.

The �rst order condition for this optimization problem is:

∂(L(δh(l)))/∂δh(l) = (1/N)
∑

iD
h
i w(l)τ(w(l)xi)

′φhδ (·)�(1/N)
∑
i

τ(w(l)xi)
′ = 0,

and the second order condition is:

∂2(L(δh(l)))/(∂δh(l))2 = (1/N)
∑
i

Dh
i w(l)τ(w(l)xi)

′′φhδδ(·)

Graham et al (2012) show for the special case where there is no geographic heterogeneity,

that φhδδ(·) < 0 (see their equation A.21), so that (L) is strictly concave.

When h = 0, 1, it is reasonably straightforward to solve the optimization problem above

(analogous to equation A.22 in Graham et al, 2012) for δ̃h(l) for all l. A major di�erence

between our GIPT approach and the IPT approach is that the GIPT estimator will lead to
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separate parameter estimates of δ̃h(l), l = 1, · · · , N . These δ̃h(l) are what we call our GIPT

estimator. In contrast, the IPT estimator leads to one estimate of δ̃h(l), for all l. When there

is no geographic variation in cross sectional data, the estimates from IPT and GIPT should be

identical, and therefore the additional computational burden from GIPT would not yield any

of the bene�ts that may be present with geographic data. We describe the moment generating

functions for the treated and non-treated samples, and then we discuss how one would compute

the tilting parameters. Our GIPT discussion below closely parallels parts of the IPT approach

of Graham et al (2012). When there is one treatment group and one control group, then let N1

and N0 denote the number of treated units and untreated units, respectively. First, for the unit

at location L = l in the treatment group, the locally weighted IPT estimator of δ, denoted by

δ̃1, is a solution to:

(3.2)
1

N

N∑
i=1

 wi(l) ·Di

G
(
τ(wi(l) · xi)′ δ̃1(l)

) − 1

 τ(wi(l) · xi) = 0,

where G
(
τ(wi(l) · xi)

′
δ̃1(l)

)
= p(x) for all x ∈ X and some δ1, τ(wi(l) · xi) is a 1 + M column

vector of known functions ofX with a constant as its �rst element, and δ̃1 is a vector of maximum

likelihood estimates of δ1. Following the logic of Graham et al (2012), the propensity score for

the ith unit in the treated sample can be written as:

(3.3) π̃1
i (l) =

1

N

wi(l)

G
(
τ(wi(l) · xi)′ δ̃1(l)

) , i = N0 + 1, N0 + 2, · · · , N.

These two equations imply:

(3.4)
N1∑

i=N0+1

π̃1
i (l) · τ(wi(l) · xi) =

1

N

N∑
i=1

τ(wi(l) · xi).
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Second, for the unit at location L = l in the untreated group, the GIPT estimator of δ0, denoted

as δ̃0(l), is the solution to:

(3.5)
1

N

N∑
i=1

 wi(l) · (1−Di)

1−G
(
τ(wi(l) · xi)δ̃0(l)

) − 1

 τ(wi(l) · xi) = 0, i = 1, · · · , N0.

Similarly, the propensity score for the ith unit in the control sample can be written as:

(3.6) π̃0
i (l) =

1

N

wi(l)

1−G
(
τ(wi(l) · xi)′ δ̃0(l)

) .
These two equations imply:

(3.7)
N0∑
i=1

π̃0
i (l) · τ(wi(l) · xi) =

1

N

N∑
i=1

τ(wi(l) · xi).

In words, equation (3.4) states that after twice reweighting the moments of xi across treated

units � once with the propensity score parameter and again with the geographic distance weights

� this equals the (geographically weighted) moments of xi over the entire sample. An analogous

relationship for the untreated sample and the entire sample is in equation (3.7). Note that

higher order moments can be included in τ(·), however this can complicate the computational

procedure.

The GIPT ATE estimate for the unit at location L = l is given by

(3.8) γ̃GIPT (l) =
N∑

i=N0+1

π̃1
i (l)Yi −

N0∑
i=1

π̃0
i (l) · Yi

where π̃1
i (l) and π̃

0
i (l) are location dependent and de�ned by (3.3) and (3.6).

Some discussion of the IPT assumptions, 1 through 4, in the context of GIPT estimation,

is worthy of some attention. The ATE identi�cation strategy, Assumption 1, is still relevant

at each target point. In terms of random sampling (Assumption 2), for a given target point

j, the observations on the wi(l) ·Di, wi(l) · xi, and Y1i are independent over all i. For data

missing at random, Assumption 3, the probability of being treated, conditional on wi(l) · xi, is

independent of the outcome of the treated sample. More formally, this assumption translates
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into P(wi(l) ·Di > 0|wi(l) · xi, Y1) = P(wi ·Di > 0|wi · xi). The strong overlap assumption, 4,

implies that the probability of being treated, given any wi(l) · xi, should be positive. Later we

discuss how these assumptions are satis�ed in our GIPT Monte Carlo Simulations and in our

GIPT empirical application.

The GIPT estimator is estimated with a kernel based moment condition. The following

additional regularity assumptions are needed for the GIPT estimator to have desirable large

sample properties. Assumptions 6 through 8 are analogous to assumptions made by Abrevaya

and Donald (forthcoming).

Assumption 6. (Distribution of X): the Support χ of the k-dimensional covariate X is a

Cartesian product of compact intervals, and the density of X, f(X) are p−times continuously

di�erentiable over χ.

Assumption 7. (Kernels): K(·) is a kernel of order s, is symmetric around zero, is equal to

zero outside
∏k

i=1[−1, 1], integrate to 1 and is continuously di�erentiable.

Assumption 8. (Bandwidths): The bandwidths b satisfy the following conditions as N →∞:

b→ 0 and log(N)/(Nbk+s)→ 0.

With GIPT we estimate an ATE for each target observation. In footnote 21 of the Appendix

of Graham et al (2012), they describe the process for obtaining the overall ATE that is based

on the single treatment e�ect for each observation. Our approach to obtaining the ATE for

each target observation is similar to the overall ATE generation process outlined by Graham

et al (2012), but we modify the moments condition using τ(wijxi) instead of t(x) as shown in

equations 6 and 8 above. With GIPT, we obtain a very representative estimate of the ATE

by generating an ATE for each target point, rather than generating one treatment e�ect for

each target point and using these to calculate one overall ATE. Assumptions 1 through 8 are

satis�ed in our Monte Carlo study below, and in many applications that consist of randomized

treatments. We focus on such randomized treatments in our application later in this paper.

In applications where one knows the exact locations of the observations, we would expect that
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generation of the separate ATEs for each observation would lead to a precise estimate of the

ATE at each location, and in turn, the overall average of the ATEs may have lower bias.

We next perform Monte Carlo simulations to demonstrate that the GIPT estimator performs

well in small samples.

4. Monte Carlo Study

We �rst denote the two-dimensional location vector, li = [l1i , l
2
i ] . In this Monte Carlo study

we generate our response variables, yi, from the following causal model and selection model:

(4.1) yi = β0(li) +DTi ·DSi · β1(li) + x · β2(li) + ui,

(4.2) DSi =


1 for l1i + 0.25× l2i > 1.25

0 for l1i + 0.25× l2i ≤ 1.25

, i = 1, · · · , N

(4.3) DTi =


1 for i > N/2

0 for i ≤ N/2

, i = 1, · · · , N

where (4.1) is the causal model that produces the response variable yi, (4.2) and (4.3) is the

selection model that produces the treatment group. If DSi equals 1, this indicates that the unit

is in the location where some observations are treated and 0 indicates being in the control group.

Also, DTi is a dummy such that a value of 1 indicates an observation is only possibly treated

after an unexpected event. Therefore, the treated sample will be comprised of the observations

for which Di = DTi ×DSi = 1 ; in other words, the treated sample consists of those units for

which both DSi = 1 and DTi = 1. The vector li = [l1i , l
2
i ] is a two-dimensional location vector

generated from a bi-variate uniform distribution between [0, 2] , ui is i.i.d. following a standard

normal distribution; xi is a random variable generated from the normal distribution N [0, 3], and

vi is i.i.d from the standard normal distribution. Additionally, for simplicity we set β0(li) = 0
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and β2(li) = 0.2, and β1(li) , our main interest in the estimation, is a variant of a bi-variate

standard normal density function:

β1(li) = 1
2π

exp
(

(l1i )2+(l2i )2

2

)
.

Note that this data generating process - as given in (4.1) (4.2) and (4.3) - is designed to

meet the identi�cation strategy and assumptions discussed in Section 3. First, the distribu-

tion of the outcome, Y , is independent of the treatment status ("unconfoundedness"); Second,

{Yi, Xi, Di}Ni=1are i.i.d. (the �random sampling� assumption). Third, P(Di = 1|Y,X) = P(Di =

1|X) (The �missing at random� assumption). Finally, P(Di = 1|X = x) = P(Di = 1) > 0, as Di

and X are independent in these data generating processes (The �strong overlap� assumption).

We use two di�erent sample sizes, N = 300 and N = 600, as the number of individuals. This

model is estimated with a variant of di�erence-in-di�erences (DID), IPT and GIPT as de�ned

in section 2. For the GIPT estimator, the optimal bandwidth for each sample size is calculated

through a grid search of 8 di�erent bandwidths. For a grid of b values, the average squared error,

ASE(b) = 1
N

∑N
i=1

{
γ̃j
GIPT − γGIPTj

}2
, is computed for 100 replications and then averaged to

estimate the mean ASE (MASE). The functionMASE(b) is then compared over the grid values

of b. The optimal bandwidth, bMASE, is chosen to be the value of b that yields the minimum

MASE value. One optimal bandwidth is obtained for each sample size for the GIPT estimator.

For the N = 300 sample, the optimal bandwidth is determined to be 0.85, and for the N = 600

sample the optimal bandwidth is 0.75. Next, using the optimal bandwidth for each sample size,

we perform 500 iterations for each sample size, and then compute the average bias and ASE

for each. The average bias and ASEs are reported in Table 1. In addition, in Figure 1 we also

plot the distributions, with histogram and estimated density, of the ASE results from the 500

repetitions on each estimator with two di�erent sample sizes.

Since some preliminary �nite sample experimental evidence on the performance of the IPT

estimator is already available (Graham et al, 2012), we are primarily interested in the perfor-

mance of the GIPT relative to estimators that do not account for geographic variation. There
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are general regularities that are evident. As expected, increases in the sample size reduce the

ASE for all estimators, suggesting that the estimators under study converge with sample size.

Across both sample sizes, the IPT estimator performs at least as well as the DID estimator, in

both ASE and average bias. Improvement of GIPT, as measured by MASE, over IPT and DID,

ranges from 49% for N = 300 to 57% for N = 600. The key implication of these results is that

in situations where geographic variation is an important factor in the data, the proposed GIPT

estimator provides a simple but e�ective way to account for it. The ASE distribution plots in

Figure 1 indicate a similar pattern. For each of the three estimators, increases in the sample size

from 300 to 600 generally shift the ASE distribution towards zero. When the three estimators

are compared with each other for the same sample size, the ASE distribution of GIPT are much

closer to zero than that of the other two estimators.

We also plot the GIPT estimated ATEs based on our simulations, in Figures 2b and 3b

(separately for N = 300 and N = 600, respectively). The corresponding true ATEs for these

samples are plotted in Figures 2a and 3a, respectively. In comparing the GIPT ATEs against

the corresponding true ATEs, it is apparent that as the sample size increases from N = 300 to

N = 600, the GIPT ATEs more closely approximate the true ATEs. This implies that GIPT is

a consistent estimator of the true ATEs as the sample size increases. Meanwhile, the simulation

results suggest that GIPT should only be used instead of the IPT estimator when the data

include information about geographic location.

5. Application: Commercial Real Estate Prices in the Vancouver, BC Metro

Area

The metro-Vancouver area was hit with a series of major storms in November, 2006, which led

to severe mudslides that caused contaminated storm runo� to enter the water supply (Evans,

2007). Some parts of the metro area were required to boil water for an extended period of

10 days longer (i.e., 12 days total) than the rest of the metro area (CBC News, 2006). This

impacted restaurants, co�ee shops, and other water-dependent businesses (Dowd, 2006). The

a�ected area included the City of Vancouver, while the adjacent City of Richmond (and many
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other parts of the metro area) had the advisory lifted on the second day. It is likely that this

was a type of information shock, which could in�uence the probabilities of similar advisories

from future storms. We examine how sale prices for properties that sold within several months

after this advisory in a section of Vancouver (the treated sample) were a�ected di�erently from

other properties sold in the same section of Vancouver several months before the advisory and

properties that sold in nearby parts of Richmond before and after the advisory (the control

sample). Thus, our identi�cation strategy relies upon an unexpected event (the extended water

boil advisory) that a�ects some geographic areas but not others. We have a missing data

issue with this data set, because we know what properties in the control group sold for, but

we do not know what these properties would have sold for if they had been in the treatment

group. Thus, some sort of adjustment using a propensity score type of approach would be

desirable. Meanwhile, there are clear di�erences in the geographic locations of properties in

our sample. It is of interest to determine empirically how the e�ects of such a shock might be

absorbed di�erently into property values across locations. Therefore, we consider three di�erent

approaches in this application, DID, IPT, and GIPT.

There is a literature that examines the e�ects of a storm on property values, including Bin et

al (2013), Atreya and Czajkowski (2016), and others. None of this literature, however, considers

the missing data problem in the same context or with the same approach as we are addressing

it here. Also, most of the other studies in the literature focus on residential property values,

while our study examines the commercial property value impacts (which is important in our

context because many businesses in our sample are water dependent). Finally, we study the

impacts of the storm using a quasi-experiment of the e�ects of a water boil advisory that was

imposed on some areas of the metro area, including the City of Vancouver, for much longer than

others. Therefore, we can examine the di�erential impacts of the water boil advisory on treated

versus control areas, shortly before versus shortly after the advisory. This is our identi�cation

strategy.

It is widely accepted in the real estate �nance and investments literature (e.g., Ling and

Archer, 2017), that a commercial property's value or sale price is approximated by the ratio of
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its net operating income (NOI) to the capitalization rate (i.e., cap rate). In some cities, such as

New Orleans, a major storm (i.e., a hurricane) such as Katrina led to property destruction as

well as major disruption in abilities of businesses to operate for an extended period of time. In

theory, if there is an event that alters an investor's estimate of basic long term risk, then such

an event is often accompanied by an increase in the cap rate. In New Orleans, this increased

risk likely led to a higher cap rate, due to the possibilities of repeat storm events in the future,

which lowered the value of commercial properties. The storm also lowered the properties' NOI

due to lost revenues, etc. People may have revised their estimate of New Orleans' vulnerability

because of rising sea levels, eroded barrier marshes, etc. Although the impacts of the storm

in Vancouver may have been somewhat di�erent, this 12 day extended water boil advisory in

the city of Vancouver caused major disruption of some business operations, especially for those

that were water-oriented such as supermarkets, restaurants, day care facilities, etc (Dowd, 2006;

CBC News, 2006). Such a disruption can be expected to lead to greater long-term risk of a

repeat event for all properties; and/or lost revenues or additional insurance costs, for instance,

for certain businesses that are water dependent. These �nancial losses can be expected to

impact their NOI, which translates into an e�ect on property values and in turn, the sale prices

of many properties. But other commercial property sale prices may not be a�ected, perhaps

because they may not be as water dependent.

When we are estimating the ATE of the extended water boil advisory on the price per square

foot of living area for commercial properties, the lot size (building area plus land area) of the

property is expected to be negatively correlated with the NOI (and in turn, the total sale price).

This is due to the fact that a larger lot size requires higher expenses for lawn maintenance and

snow removal, for instance. But the e�ect of lot size on the price per square foot of living

area may be either positive or negative. A larger lot size may or may not lead to economies of

scale that are inherent in the maintenance of a commercial building. Greater economies of scale

are expected to lead to higher NOI and therefore a higher price per square foot of the overall

property. There also may be particularly strong price e�ects for older properties, or properties

that have not been renovated recently. These older properties may be expected to rent for less,
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need more repairs, and require more to upkeep due to unanticipated issues resulting from the

age of the property. This can also be expected to factor into the NOI for a property. In other

words, an older property, or one that has not been renovated recently, should have a lower NOI

than a similar, nearby property that has been renovated recently. Therefore, it is important to

use the lot size and the e�ective age as a proxies for NOI, especially since we do not have direct

estimates of NOI in our dataset. The e�ective age is the number of years between the year of

most recent sale and the last major renovation of a property. Properties that were renovated in

the year in which they were most recently sold have an e�ective age of 0. Similarly, properties

that have never been renovated have an e�ective age equal to the actual age of the property.

In our model speci�cations, we use as the control variable the interaction term of lot size (in

thousand square feet) and the e�ective age of the property (in years). For reasons described

above, these two variables are the two best proxies for NOI that we have available to us. Also, in

the IPT and GIPT speci�cations, when we try to include two separate di�erence-in-di�erences

for these two variables, using the �rst two moments of each, the model is unable to solve. We

are interested in the ATE from the extended water boil advisory, and we desire to control for

the lot size and e�ective age as proxies for NOI but are not directly interested in their marginal

e�ects. Therefore, using the interaction term enables us to control for both of these factors as

proxies for NOI. Finally, Graham et al (2011) and Anderson (1982) suggest interaction terms

be included in these types of propensity score models. So for all of these reasons, we use the

�rst two moments of the interaction term in the IPT and GIPT speci�cations. Obviously, for

consistency across speci�cations, we use the interaction term in the DID model as well. The

impact of a change in cap rate associated with long-term risk due to the storm is re�ected in the

treatment e�ect dummy. Property owners are expected to adjust their forecasts of long-term

risk after the storm, and this is re�ected by the treatment e�ect estimate. One would expect

property owners in di�erent locations to have di�erent forecasts of long-term risk, and therefore

we might expect heterogeneity in the ATE estimates.

Also, in these types of treatment e�ect studies it is recommended to exclude observations in

a bu�er zone of properties that are excluded from the analysis (see, for instance, Angrist and
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Pischke (2009)). Therefore, we restrict our attention to a section of the metro area where some

observations are in the City of Vancouver (which was subject to the water boil advisory for 12

days after the storm) and others in nearby parts of the neighboring City of Richmond (which

had the water boil advisory lifted after one day). We avoid including properties outside of this

bu�er zone, e.g., in the central business district of Vancouver, where there are potentially many

other confounding factors. Our focus on properties in the City of Richmond near the Vancouver

border allows for a bu�er zone consisting in properties in the western part of Richmond. We

focus on a period of several months before, and several months after the 12 day water boil

advisory which occurred for the City of Vancouver in November 2006. The choice of this time

period allows for a bu�er in the temporal dimension. We end our sample in August 2007 because

we want to avoid the e�ects of the recession that started in late-2007, and we begin in January

2006 because we want to avoid other events that might have impacted property values before

2006 (thus, creating a temporal bu�er beyond several months around the date of the storm).

In our data set, there are 96 commercial sales observations in the selected neighborhoods

between January 2006 and August 2007 for which there are also data on sale price, square

footage, lot size and the e�ective age. Figure 4 shows the locations of our sample of 96 com-

mercial properties that sold (as arms-length transactions) in parts of the City of Vancouver

and City of Richmond between January 2006 and August 2007. These data are from the BC

Assessment database, which were purchased from Landcor.

Descriptive statistics are presented in Table 2. The average commercial property sold for

approximately C$ 215 per square foot, had a lot size of about 35,000 square feet, had an

e�ective age of 38.76 years (i.e., there were 38.76 years since the last major renovation), and 26

percent of the observations were in the treatment group (i.e., in the City of Vancouver - opposed

to the City of Richmond - and sold after the extended water boil advisory was imposed on the

City of Vancouver).

We �rst estimate the following variant of a DID model: Yi = β0 + β1Xi + β2Di + e, where Yi

is price per square foot for property i, Xi is the product of the lot size and the e�ective age.

We assume that e is an i.i.d. error term with mean 0 and constant variance, and E(eiej) = 0
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for i 6= j. Di = 1 for those properties in our data set that sold between November 2006 and

August 2007 (i.e., after the extended water boil advisory), inside the City of Vancouver; and

Di = 0 for properties that sold in the City of Richmond before and after the advisory, and those

properties that sold in the City of Vancouver before the advisory. The regression coe�cient β2

is the �treatment e�ect� of locating in the City of Vancouver after the storm.

The second model is IPT. We consider the �rst 2 moments so that t(x) = [1, X,X2], and

X is the product of the lot size and e�ective age, and Y is the sale price per square foot. We

reweight the X's so that the sample mean and variance of X in the treated sub-sample (and

separately, in the untreated sub-sample) equals the entire sample mean and variance of X. We

utilize the same data set as we used for the DID estimation. We calculate the ATE based on

the IPT estimator.

Finally, we estimate the GIPT model, with Gaussian kernel weights given as

(5.1) wi(l) =
[
exp(−0.5 ∗ (d(l)/b)2)

]1/2
,

where di(l) is the Euclidean distance between property i and location l, and b is a bandwidth

parameter. We explain the bandwidth determination in more detail below. In the GIPT model,

we consider the �rst two moments and use τ(wi(l)X) = [1, wi(l)X, (wi(l)X)2] for each target

point, l. In this context, we are re-weighting by including distance weights in the propensity

score weighted averages of X so that the re-weighted mean and variance of X for the treated

sample equals the re-weighted mean and variance for the entire sample.

We present the DID and IPT results in Tables 3 and 4. First, with DID we regress the

sale price per square foot against a constant, the treatment dummy, and the product of the

e�ective age and the lot size (for consistency with the IPT and GIPT estimations, we retain

this interaction term here). The treatment dummy, Di, has a coe�cient estimate of β2 = −49.97,

implying that the typical commercial property in the treated sample sold for approximately C$

49.97 less per square foot than the typical property in the control sample. However, β2, the
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ATE estimate, is highly insigni�cant (t-statistic=-1.24). With IPT, the ATE is C$ -50.37 (with

t-statistic of -2.13), indicated by the coe�cient �ate gamma� in Table 4.

With the GIPT approach, we �rst must determine the appropriate bandwidth. We �rst

contemplate a �Rule of Thumb� bandwidth, as in Silverman (1986). However, this criterion

requires normality of the distances data in order for it to be applicable. An informal examination

of the locations of the properties in Figure 2 indicate that it is inconclusive as to whether the

distances have a normal distribution. Therefore, without evidence of normality of these distances

data, we estimate integer bandwidths in the range of 0.03 and somewhat higher and lower,

moving up and down in units of 0.01. Integer bandwidths smaller than 0.03 cause di�culties in

the GIPT estimations that preclude it from solving for many of the target points. We choose

the smallest of these bandwidths, h=0.03, for which the GIPT estimations solve with ease. This

bandwiddth choice allows for the maximum amount of variation in the parameter estimates.

In fact, as we experimented with increasing the bandwidth above h=0.03, the variation in the

ATE estimates from GIPT across observations decreases dramatically, in general approaching

the ATE estimate from IPT for the higher bandwidths. This result is expected, as with a higher

bandwidth there are more observations receiving positive weight than with a lower bandwidth,

so the GIPT ATE estimates with the higher bandwidths closely approximate the IPT ATE

estimate.

In terms of the GIPT variants of the IPT assumptions that we describe in section 3.4 above,

it is reasonable that our data set and application satisfy these assumptions. First, we rely on

an identi�cation strategy that considers properties that sold inside and outside of the water

boil advisory zone, in a reasonably short time frame before versus after the extended water

boil advisory date. For unconfoundedness, we assume that we have random sampling for our

data set, as the treatment does not depend on the price of the property. Speci�cally, one might

argue that the kernel weights imply two properties, i and l, with a high wi(l) (i.e., properties

close to each other) are necessarily treated. But this is not the case, as can be seen in Figure

4. Properties on the south side of the Frasier River are in Richmond (untreated), while those

just to the north are in Vancouver. Also, any given pair of properties in Vancouver that are
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close to each other are not necessarily both treated, because some of the nearby properties in

the City of Vancouver sold before the advisory and were therefore untreated. For our control

variables, the interaction of e�ective age and lot size, it is reasonable to assume that nearby

observations have no impact on the value of these two variables at a particular target point.

We have data missing at random, as we know what properties sold for at their location but not

what they would have sold for at other locations. We also have strong overlap, since there are

some older and younger properties, as well as some larger and smaller lot size properties, in

both the treated and untreated samples. There is a unique propensity score estimated for each

target point. We also assume assumptions 6 and 8 hold, and since we use the Gaussian kernel,

the symmetric kernel distribution (assumption 7) is satis�ed.

We next estimate the ATEs for all target points, l, using the GIPT estimator that we have

developed in this paper. Figure 5 shows the ranges of ATEs of the metro-Vancouver area with

the locations of the sample of commercial properties that sold in the period of our sample. This

range is C$ 8.08 to approximately C$ -61.90 , but the former ATE has a relatively large standard

error and is statistically insigni�cant. Most of the larger ATEs are statistically signi�cant (P-

value<0.05). Appendix 1 contains a list of all properties and their ATEs and P-values, and

Figure 4 demonstrates the locations of properties with ATE that have P-value<0.05. We take

the mean of all of the 96 ATEs (which we denote as the �AATE�), in Table 5. The AATE equals

approximately C$ -38.38, while the mean of the standard errors is C$ 22.54. In general, the

properties with the most negative and signi�cant ATEs are located in the central and south

areas of Richmond and central Vancouver, while those with statistically insigni�cant ATEs are

in east Vancouver.

While the ATE from DID and IPT are statistically insigni�cant, with GIPT we �nd that most

of the 96 observations have negative ATEs, but 85 out of the 96 observations have statistically

signi�cant ATEs (with P-value>0.05). Thus, using GIPT enables us to unmask which speci�c

locations would be signi�cantly impacted by the storm related water boil advisory and which

would not. With GIPT, the ATEs are estimated based on the properties surrounding it or close

by. Interestingly, many of the properties with signi�cantly negative ATEs are concentrated in 5
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distinct neighborhoods of Richmond (which did not experience the 12-day extended water boil

advisory). The GIPT approach tends to imply there will be similar ATEs for properties nearby

each other, therefore we might expect that the ATE with IPT should be bigger than many of

the ATEs from GIPT because IPT estimates the ATE based on the entire sample and does not

down-weight for distant observations. Another interesting aspect of the data is the di�erence

in lot size in the two cities. Despite heterogeneity in lot size in both cities, many properties in

the Vancouver part of our sample (some of which are in the treatment group) are located on

very small lots, while those properties in Richmond (which consists of a subset of the control

group) have larger lots. This has implications for re-weighting with the propensity scores, as

one aspect of this is that the GIPT procedure re-weights based on the mean and variance of

the geographically weighted product of the lot size and e�ective age of the properties. This

heterogeneity in lot size across space can clearly impact the ATEs. The ATEs are larger in

most of central Richmond than in much of Vancouver.

Finally, within each of these 5 neighborhoods of Richmond, at least one (and sometimes

several) of the properties in our sample are in a water-intensive industry. For instance, in a

neighborhood around Horseshoe Way in the southern part of Richmond, there is a company that

manufactures liquid cleaning products and health/beauty products. Nearby there is a recycling

center and a millworks production company. While we expect the ATE of the liquid product

manufacturing company property to be a�ected by an extended water boil advisory, the ATE of

the other two companies properties in the same neighborhood are likely to be impacted by their

proximity to the liquid product manufacturing company property. About 0.5 km south of this

neighborhood is another cluster of properties with large negative, and statistically signi�cant

ATEs, including one where there is a company that processes �sh products for use as fresh

and preserved bait; nearby there is a produce market that undoubtedly relies on water to clean

its produce; and an event planning company. In this situation, the �sh products company

and produce market may have a strong impact on the ATE of the event planning company

due to its close proximity. Approximately 3 km north of this neighborhood (10011 Blundell

Road in Richmond), there is a daycare facility with a statistically signi�cant ATE, which was
23



formerly a convenience market and the daycare moved into the space subsequent to the storm.

The property may have had a negative, statistically signi�cant ATE because the property relies

daily on clean water for the children and sta� to wash hands, dishes, etc, and if it had been in the

treated group, this would have been expected to lower the value of the property. On the other

hand, there is a daycare facility in Vancouver (3165 Kingsway, Vancouver) with a statistically

insigni�cant ATE, which may be somewhat surprising, although perhaps this facility relies

more on hand sanitizer and other less water-intensive ways to keep its students clean. A more

plausible explanation is the fact that at this address there is also a lighting store that is likely

not water intensive, so the presence of this store may o�set the e�ect on the property's overall

ATE from the daycare. Approximately 2 km to the northwest of the daycare in Richmond is

a restaurant/bakery, and an o�ce building. In this case, the restaurant/bakery clearly would

be impacted by an extended water boil advisory, while the ATE of the o�ce building may be

impacted due to the proximity to the restaurant/bakery. Finally, approximately 0.5 km north

of the restaurant/bakery there is a cluster of 4 other properties that have statistically signi�cant

(negative) ATEs. These include a large shopping plaza with restaurants, a co�ee shop, doctor's

o�ces, a drug store, and other o�ces. Very close to this shopping plaza is an automobile repair

garage, a dermatology o�ce, and an o�ce building. It is likely that the water dependency of

many of the businesses in the shopping plaza is one explanation for a signi�cantly negative ATE

for that property, while the signi�cantly negative ATEs for the other nearby properties may be

at least in part determined by proximity to the shopping plaza.

One might conjecture that some of the di�erences in ATEs in the treated area (in the City

of Vancouver after the boil water advisory) versus the control area (in the City of Richmond

before the boil water advisory, and both Richmond and Vancouver before the advisory) may

be due to di�erences in property tax rates in the two cities in these two years. We informally

examined the property tax rates in these two cities in 2006 and 2007, and found that the 2006

base rate in Richmond for class 6 properties (commercial) was C$ 22.38361 per thousand dollars

of assessed values. There were some additional add-ons for sewer debt, which ranged between

C$ 0.23300 and C$ 0.28300 in 2006, implying a total tax rate of approximately C$ 22.64 per
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thousand dollars of assessed value. There is an additional parking tax for Richmond properties

with parking, at a rate of C$ 0.78 per square meter of parking spaces. The 2007 tax rate in

Vancouver for Class 6 properties (commercial) was C$ 24.87171. Therefore, there is a di�erence

of approximately C$ 2.23 per thousand dollars of assessed value. Assuming this di�erential is

expected to persist inde�nitely into the future (i.e., an in�nite time horizon), and a discount

rate of 5%, this implies a di�erence of C$ 2.23*(1+0.05)/0.05 over the life of the property, or a

total expected property tax di�erential of C$ 46.83 per thousand dollars of assessed value. We

assume the sale price of a property is highly correlated with its assessed value. Then, if the

ATE is C$ -45 for a property that sold in Richmond before the water boil advisory in 2006, for

instance, then C$ 2.10 of this C$ -45, or less than 5% of the ATE, can be attributed to expected

di�erences in property taxes in the two jurisdictions in the two years.

Finally, one might argue that a fuzzy regression discontinuity framework could be appropriate

for this particular problem, as in Angrist and Pischke (2009). But this is not the case in our

speci�c application. The propensity score,

p(x) = Pr(Di = 1|Xi = x) = E[Di|Xi = x],

does not necessarily jump at any particular value of x. There are both large and small lot

sizes in our sample of properties in Richmond and Vancouver, and also there are both old and

new properties in both cities as well (as required by the strong overlap assumption of IPT).

Therefore, our X, the interaction term of lot size and e�ective age, does not have a natural

jump point in the probability of treatment at any speci�c value of x. In future work, it may be

of interest to explore how to address potential fuzzy regression discontinuity in the context of

IPT and GIPT, for speci�c applications where at particular values of x there is a jump point

in the propensity score.

6. Conclusion/Discussion

We demonstrate the use of a GIPT estimator in an application of how a major storm that

leads to an extended water boil advisory in some areas impacts property prices di�erently in
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two adjacent Canadian cities. This GIPT estimator can be a useful technique to generate ATEs

for each geographic location, and re-weight propensity score estimates when there is missing

data, given information on the geographic locations of the observations. As we show in our

application and in our simulation study, there are several bene�ts, as well as some potential

limitations, of using the GIPT approach in these types of applications. One advantage of

GIPT is that we are able to generate heterogeneous ATE estimates for each target point across

locations. We can also test for the statistical signi�cance of each of the ATEs. The average of

the ATE's, or the AATE, is one way of summarizing this information over all observations, if so

desired. In our application, one may be particularly interested in the ATE estimates that are

statistically signi�cant, in order to determine where remediation should be undertaken to try

to prevent similar damage to the water supply in the future. There are many other potential

missing data problem applications of the GIPT estimator where it would be desirable to generate

heterogeneous ATEs.

Another advantage of using GIPT in applied settings, as demonstrated by our Monte Carlo

simulations, is that the bias and average squared errors of the GIPT estimator tends to be lower

than the bias for the DID and IPT estimators. However, this is only expected to hold if the

data points exhibit geographic heterogeneity; otherwise, the additional computation time for

GIPT would be a major drawback. Even when there is spatial variation in the data, GIPT is

a more computationally intensive procedure and in some cases this may diminish its feasibility,

especially in very large samples. We have also addressed the important issue of bandwidth

selection, which is crucial for each speci�c context of a given empirical application and Monte

Carlo simulations when using the GIPT framework. As we have demonstrated in our application

where there is information on the locations of the observations, the GIPT approach can extract

important information about which individual observations have statistically signi�cant ATEs,

and it allows for heterogeneity in the magnitudes of the ATEs across space.

Clearly, there are advantages to both the IPT and GIPT approaches to addressing the missing

data problem in generating heterogeneous estimates of ATE's. It is also clear that GIPT is
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superior to DID. GIPT performs much better than DID in our Monte Carlo simulations, and

this is to be expected, in part because DID ignores the missing data problem.

In future work, it would be of interest to consider modifying the GIPT framework to contexts

where there is a balanced panel dataset (space-time), to address a broader array of applied

missing data problems. Such an extension could also contribute to the literature on ATE

heterogeneity by allowing for the possibility that the ATE could vary over both geographic

space and over a long period of time. This may �rst necessitate extension of the regular IPT

framework to a balanced panel data setting, as well as generating Monte Carlo evidence to

validate the performance of the approach.
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Appendix A. Figures

Figure 1: Simulation Results on Average Squared Errors (ASE) Distributions From DID, IPT and GIPT 1

1In the ASE for GIPT (N=300) plot, an outlier value (maximum) is dropped for the convenience of plotting.
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Figures 2 and 3: Simulations Scatter-plots - The True ATEs and the GIPT Estimates
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Figure 2a: True ATEs for 300 Observations Simulations, Repetition #1
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Figure 2b: ATEs from GIPT for 300 Observations Simulation, Repetition #1
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Figure 3a: True ATEs for 600 Observations Simulations, Repetition #1
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Figure 3b: ATEs from GIPT for 600 Observations Simulation, Repetition #1
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Figure 4: Properties with Statistically Signi�cant ATE from GIPT Estimations2
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Figure 5: ATE Values from GIPT Estimations
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2. Tables

Table 1: Simulation Results - Small Sample Performances for GIPT, IPT and di�erence-in-di�erences3

GIPT IPT di�erence-in-di�erences

Sample Size = 600

Bias .0074211 -.0408718 -.0408698

ASE .0025323 .0058796 .0058782

Sample Size = 300

Bias .0015103 -.0410462 -.0410958

ASE .0031035 .0060545 .0060559

3The bandwidth used for GIPT is 0.75 with N=600 and 0.85 with N=300. See section 4 for more details for
bandwidth selection algorithm.
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Table 2: Descriptive Statistics, Vancouver Application 
 (1)     
      
 mean sd min max count 
sale price per square ft 215.9012 169.2998 20.60159 1128.099 96 
Effective Age 38.76042 12.05142 9 70 96 
Lotsize(thous sqft) 34.92404 49.13306 2.76459 246.88 96 
Treatment Dummy .2604167 .4411657 0 1 96 

 
 
 
 
 
 
 
 
 
Table 3: Difference-In-Differences Results, Vancouver Application 
 (1) 
 sale price per square ft 
ATE -49.97 
 (-1.24) 
  
[effective age]x[lotsize(thous square feet)] -0.0467* 
 (-1.69) 
  
([effective age]x[lotsize(thous square feet)])^2 0.00000289 
 (1.04) 
  
Constant 270.3*** 
 (8.94) 
R-sq 0.069 
N 96 

t statistics in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 4: Inverse Probability Tilting Estimation Results, Vancouver Application 
 (1) 
  
delta1  
[effective age]x[lotsize(thous square feet)] -0.000775** 
 (-1.98) 
  
([effective age]x[lotsize(thous square feet)])^2 9.42e-08** 
 (2.21) 
  
Constant -0.641** 
 (-1.97) 
delta0  
[effective age]x[lotsize(thous square feet)] -0.00198 
 (-1.35) 
  
([effective age]x[lotsize(thous square feet)])^2 0.000000229 
 (1.43) 
  
Constant -0.0760 
 (-0.13) 
ate  
gamma -50.37** 
 (-2.13) 
Observations 96 

t statistics in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
 
 
 
 
 
 
 
 
Table 5: Geographically-Weighted Inverse Probability Tilting Results, bandwidth=0.03 
 (1)     
      
 mean sd min max count 
ATE -38.38539 18.17553 -61.90205 8.08882 96 
Standard Errors of ATE 22.54444 1.739582 18.68966 26.44306 96 
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