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Abstract. There are many applied real estate studies that have data "missing at random".

We develop a nonparametric geographic (or spatial) estimator that allows for average treatment

e�ect (ATE) heterogeneity across geographic space and addresses �missing data� problems. This

approach uses propensity scores that re-weight by equating moments across treated (and un-

treated) sub-samples with the entire sample, allowing for separate tilting parameters in the

treated and untreated samples, as in Graham et al. (2012). Our contribution is to add a sec-

ond rebalancing, by down-weighting observations far from each target point. We call this a

Geographic Inverse Probability Tilting (GIPT) estimator. GIPT allows for heterogeneous ATE

estimates that vary by geographic location, and can utilize a large proportion of the sample in

estimating the ATE at each target point. Small sample properties demonstrate that the ATE

surface is smooth with GIPT. Our Monte Carlo simulations validate the strong small sample per-

formance of GIPT. Among many possible real estate applications of GIPT, we demonstrate how

a severe storm leading to an extended water-boil advisory, imposed much longer on sub-sections

of Metro-Vancouver Canada (the �treatment�), impacted individual commercial property prices

(the ATEs) di�erently.
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1. Introduction

Two increasingly popular areas of focus in recent applied real estate research research are

average treatment e�ect (ATE) heterogeneity, and missing data problems. The issue of spatial

dependence with "missing data" in real estate applications was explored by LeSage and Pace

(2004) in the context of spatial lag models. We develop a nonparametric approach that addresses

both ATE heterogeneity and missing data problems in one framework, intended to be a useful

tool in speci�c applied real estate settings.

One set of approaches to "missing data" problems in general settings is propensity score

approaches. There is an extensive body of literature on Inverse Probability Weighting (IPW),

as in Rosenbaum and Rubin (1983) and followed by Imbens (2004) and Wooldridge (2007).

More recently, Graham et al (2012) developed an approach called Inverse Probability Tilting

(IPT), which imposes a balance between the treated and control groups while estimating the

ATE.

Some recent research has focused on speci�c types of missing data problems and some have

addressed them with propensity score approaches. For instance, Abrevaya and Donald (2017)

consider a situation where some observations on an explanatory variable are missing, and they

develop an estimator to handle this problem.

One objective of this paper is to incorporate a second adjustment for missing data problems

as a part of the estimation strategy in our speci�c application.1 Speci�cally, we extend the

IPT estimator to allow for re-weighting based on geographic heterogeneity, in addition to a

propensity score approach for the missing data problem. The attractive features of IPT that

we describe below have prompted us to explore this geographic IPT. This type of additional

adjustment is important in the context of many real estate treatment e�ect problems, because

real estate applications often have data that are "missing at random" (LeSage and Pace, 2004),

and the "true" ATEs can be di�erent across each of the individual target points. While it would

1This speci�c application di�ers from the application in Graham et al (2012) in terms of the structure of the
data and type of problem considered. Our approach would not be possible to implement for the application in
Graham et al (2012) unless more information were available on the geographic locations of the observations.
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be possible to estimate IPT separately in various neighborhoods, doing so discards potentially

useful data from observations that are further apart. Our approach allows for heterogeneous

ATE estimates. In larger samples, the ATE surface is smooth with GIPT, as can be seen in our

Monte Carlo study. In contrast, using other methods, such as di�erence-in-di�erences, IPW, or

IPT in one location results in a separate treatment e�ect at each location but the ATE does not

vary across locations, unless one were to estimate the models separately for di�erent subsections

of a city, for example. Therefore the ATE obtained with these other methods is a surface that

is a "plane" (or a set of "planes"), and re-estimating the model at several di�erent locations

would result in discrete jumps in such surfaces.

In particular, the issue of ATE heterogeneity has received some recent attention. While one

advantage of IPT is that it leads to a unique treatment e�ect for each observation, it may also

be useful to consider heterogeneity in a nonparametric framework that could lead to di�erent

ATEs across individual observations or target points. In such situations, an approach to deal

with the missing data problem while allowing for heterogeneity in ATEs across target points

could be desirable in certain contexts. Thus, we demonstrate how a geographic version of the

IPT approach that considers heterogeneity in the data can address the missing data problem

while at the same time allowing for ATEs to vary across observations.

One potential application of our estimator is property sales, where a treatment is imposed on

some properties in a geographic region, but neither on others in the same region nor upon any

properties in a neighboring region. With this particular missing data problem, the researcher

knows what price a treated property sold for, but does not know how much the same property

would have sold for if it had been untreated. The ATEs might vary across di�erent locations.

While this is the speci�c application that we consider in this paper in order to demonstrate

the implementation of our estimator, there are many other potential applications, in contexts

where there is heterogeneity in the data and a treatment is imposed on properties at some target

locations, but not in others.

In the remainder of this paper, we �rst motivate one type of missing data problem (although

our estimator can be applicable to other missing data problems). Next we explain the extension
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to the IPT estimator that allows for ATE heterogeneity, and the adjustments to the propensity

score weights made to allow for more distant properties to be down-weighted relative to closer

properties. We call this new method the �Geographic Inverse Probability Tilting�estimator

(GIPT). We describe the computation process of the GIPT estimator, then provide some Monte

Carlo evidence to demonstrate that the estimator performs well in this context. We apply this

GIPT estimator to the case of how commercial property prices in the metro-Vancouver, BC

Canada region may be impacted di�erently, shortly after a storm leading to an extended water-

boil advisory that is imposed on some parts of the region for much longer than other areas. A

key feature of this example is that we know the geographic locations of the properties. Also this

is not a panel data set; some properties sold shortly before the storm and others sold shortly

after, but no individual properties sold twice (i.e., both shortly before and shortly after). In

other words, we do not have any repeat sales observations. This type of data is common in

many real estate applications. Finally, we discuss potential future extensions to this approach

and summarize our �ndings.

2. Motivation

Consider the following problem as one particular type of missing data problem. First, suppose

one is interested in analyzing a data set on units that are in various locations throughout a

particular geographic region, to determine the ATEs at each location in the region shortly after

versus shortly before a random �event�. The treatment area may be con�ned to speci�c parts of a

particular metro area, for instance, which we call the subject area. The �untreated� observations

are a set of units that are in some parts of the metro area, before and after the �event� as well

as a set of di�erent units within the subject area before the �event�. Then, we can estimate the

e�ect of being in the treatment sub-sample opposed to the non-treated sub-sample.

But in this type of empirical application, the researcher does not know what the treatment

outcome would have been if a particular unit had been untreated. Also, the researcher does not

observe the outcome for units in the treated group if each unit had been untreated. These two

situations are the missing data problem that we consider in this paper. In these cases, in order
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to obtain valid treatment e�ects, one can re-weight the data with propensity scores. There are

several approaches to accomplishing this. LeSage and Pace (2004) consider spatial lag models

in the speci�c context of real estate applications, and focus on the "missing data" case of not

knowing the price of unsold properties. A more general strand of the "missing data" literature

is an Inverse Probability Weighting (IPW) approach, which has received extensive attention in

the literature (see, e.g., Rosenbaum and Rubin (1983), and Imbens (2004), among others), and

is one approach to obtain the propensity score weighting parameter. An attractive alternative

is the IPT approach, as in Graham et al (2012), which generates separate tilting parameter

estimates for the treated and untreated samples, and imposes a balance between the treated

and control groups when estimating the ATE. There are alternative missing data approaches

that have been proposed by others, such as random forests (Wager and Athey, 2017), and some

methods closely related to IPT (e.g., Imai and Ratkovic, 2014, and Hainmueller, 2012), among

others. A comparison of many of these approaches is presented in Frölich et al (2017), however

there is no known analysis of GIPT in the literature. Allowing for ATE heterogeneity in missing

data problems in the context of IPT is one contribution of our paper.2

Speci�cally, the IPT and IPW approaches do not allow for geographic heterogeneity in the

ATEs across observations in the ATEs.3 If the target point locations of properties are varied,

possible ATE heterogeneity could be an important consideration in many but not all appli-

cations. It may be helpful to re-weight a second time, to consider ATE heterogeneity across

target points. This is common in the non-parametric estimation literature, speci�cally, with an

approach called Locally Weighted Regressions (LWR), also commonly referred to as Geographi-

cally Weighted Regressions (GWR), as in Brunsdon et al (1996). McMillen and Redfearn (2010)

describe LWR and present a real estate application. However, no known work has incorporated

this type of estimation into an IPT framework.

2Other recent contributions to this ATE heterogeneity literature have included Allcott (2015), Hsu et al (2018),
and Hotz et al (2005).
3IPT allows for heterogeneity between the "treatment" and "control" tilting parameters but these do not vary
by geographic location.
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In recent research, Abrevaya, Hsu, and Lieli (2015) consider Conditional Average Treatment

E�ect estimation (CATE). Meanwhile, Lee, Okui, and Whang (2017) consider Conditional Aver-

age Treatment E�ect Function (CATEF) estimation. While both procedures can be conceptually

extended to estimate ATE heterogeneity across geographical locations, the procedure proposed

in this paper di�ers from the existing procedures in two important ways. First, we propose a pro-

cedure based on IPT while Abrevaya, Hsu, and Lieli (2015) consider a procedure based on IPW;

and Lee, Okui, and Whang (2017) consider a procedure based on Augmented IPW (AIPW).

As argued by Graham, Pinto, and Egel (2012), we expect GIPT to demonstrate some of the

advantages of IPT over existing IPW estimaton (including augmented IPW).4 Second, in our

proposed procedure, the propensity score function is estimated with a geographically weighted

approach, which is a semi-parametric procedure tailored for geographical data. Abrevaya, Hsu,

and Lieli (2015) consider a fully nonparametric local linear regression for the propensity score

function estimation. Lee, Okui, and Whang (2017) consider a fully parametric logit regression

for the propensity score function estimation. The local linear regression approaches have clear

strengths but they could su�er from the curse of dimensionality when there are large numbers

of confunders.

3. Approach

3.1. Model. Suppose that there are N units, indexed by i = 1, . . . ,N, viewed as drawn

randomly from a large population. We postulate the existence for each unit of a pair of potential

outcomes, Yi(0) for the outcome under the control treatment and Yi(1) for the outcome under

the active treatment. Let Xi = {X1
i , Li}. Each unit has a vector of covariates, pretreatment

variables or exogenous variables, X1
i , and vector of covariates Li that may consist of a subset of

X1
i and/or a set of variables not included as part of X1

i (such as geographic coordinates). Each

unit is exposed to a single treatment; Di = 0 if unit i is untreated and Di = 1 if unit i receives

the active treatment. We therefore observe for each unit the triple (Di, Yi, Xi), where Yi is the

realized outcome:

4The proof of these bene�ts of GIPT are nontrivial, but we rely on some Monte Carlo evidence.
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Yi ≡ Yi(Di) =


Yi(0) if Di = 0,

Yi(1) if Di = 1.

Distributions of (Di, Yi, Xi) refer to the distribution induced by the random sampling from the

population. We follow the potential outcomes of Neyman (1923) and Rubin (1974), assuming

the existence of potential outcomes, Y (1) and Y (0), corresponding respectively to the outcome

the subject at a speci�c target point would have experienced with or without treatment. Then

we can de�ne the average treatment e�ect (ATE) at l as

γ(l) = E[Y (1)− Y (0)|L = l].

In practice, however, one only observes

Yi = (1−Di)Yi(0) +DiYi(1)

i.e., only Yi(1) for actively treated units or Yi(0) for untreated units are observed at any given

target point. First, we make the following assumption:

Assumption 1. (Unconfoundedness) {Y (1), Y (0)} ⊥ D|X.

This assumption e�ectively implies that we can treat nearby observations as having come

from a randomized experiment. It follows immediately that the ATE at target point l, γ(l), is

given as:

γ(L = l) = E [E [Y |D = 1, X]− E [Y |D = 0, X] |L = l]

or equivalently

(3.1) γ(L = l) = E

[
DY

p(X)
− (1−D)Y

1− p(X)
|L = l

]
7



where p(X) = P [D = 1|X = x] = E[Di|Xi = x] is the propensity score function that prescribes

the conditional probability of receiving treatment at x (which is a generalization of the setup in

Rosenbaum and Rubin, 1983). As this propensity score function is generally unknown, many

earlier methods on average treatment e�ect estimation di�er in how they estimate p(X) using,

e.g., variants of maximum likelihood approaches, such as the Inverse Probability Weighting

(IPW) estimator that we describe in the next section, and then the estimate of p(X) implies an

ATE.

3.2. Geographic inverse probability tilting estimator (GIPT). Rosenbaum and Rubin

(1983) proposed the Inverse Probability Weighting ATE estimator by �rst replacing the p(X)

with a maximim likelihood estimator, then averaging over sample points. The Rosenbaum and

Rubin (1983) setup implicitly assumes no variation in the ATE across observations. Graham

et al (2012) proposed an alternative method by estimating the propensity score function that

imposes a balance across the treated and control groups with a particular estimator consisting

of two separate tilting parameters, one for each observation in the treatment group and another

for observations in the control group. We incorporate target point speci�c weights into the IPT

estimator from Graham et al (2012), in the following way. Our method of estimating the target

point speci�c average treatment e�ects is based on a extension of the IPT estimator proposed by

Graham et al (2012) and relies upon the following assumptions 2 through 9 below, in addition

to Assumption 1 above (the unconfoundedness assumption).

Assumption 2. (Random Sampling). {Di,Xi, Yi}Ni=1 is an independently and identically dis-

tributed random sequence. We observe D, X, and Y = DY (1) + (1−D)Y (0) for each sampled

unit.

Assumption 3. (Identi�cation) For some known K × 1 vector of functions Φ(Y,X, γ(l)),

E(Φ(Y,X, γ(l))) = 0

with (i) E(Φ(Y,X, γ(l))) 6= 0 for all γ(l) 6= γ0(l), γ(l) ∈ Θ ⊂ RK, and Θ compact with

γ0(l) ∈ int(Θ),(ii) |Φ(Y,X, γ(l))| ≤ c(Y,X) for all Y,X with c(·) a non-negative function and
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E(c(Y,X)) <∞, (iii) Φ(Y,X, γ(l)) is continuous on Θ for each Y,X and continuously di�eren-

tiable in a neighborhood of γ0(l), (iv) E[‖Φ(Y,X, γ(l))‖2] <∞, and (v) E[supγ(l)∈Θ

∥∥∇γ(l)Φ(Y,X, γ(l))
∥∥]

<∞.

Assumption 4. (Strong Overlap) p(X) = P [D = 1|X = x] is bounded away from 0 and 1 over

ℵ, the support of X.

Assumption 5. There is a continuous function δ0(·) and compact, known vector r(X) of lin-

early independent functions of X, and known function G(·)such that (i) G(·) is strictly increas-

ing, continuously di�erentiable, and maps into the unit interval with limν→−∞G(ν) = 0 and

limν→∞G(ν) = 1, (ii) p(x) = G (r(w(l)x1)′δ0(l)) for all x ∈ ℵ, and (iii) G(r(w(l)x1)′δ0(l)) is

bounded away from 0 and 1 for δ0(·) and x ∈ ℵ.

GIPT is a kernel based estimator.5 The following additional regularity assumptions are needed

for the GIPT estimator to have desirable large sample properties. Assumptions 6 through 8 are

analogous to assumptions made by Abrevaya and Donald (2017).

Assumption 6. (Distribution of X): the Support χ of the k-dimensional covariate X is a

Cartesian product of compact intervals, and the density of X, f(X) are p−times continuously

di�erentiable over χ.

Assumption 7. (Kernels): K(·) is a kernel of order s, is symmetric around zero, is equal to

zero outside
∏k

i=1[−1, 1], integrate to 1 and is continuously di�erentiable.

Assumption 8. (Bandwidths): The bandwidth b satis�es the following conditions as N →∞:

b→ 0 and log(N)/(Nbk+s)→ 0.

5There is a large literature on locally weighted regressions (LWR), which is essentially a form of weighted least
squares and is a commonly used kernel estimator in spatial studies to allow for geographic heterogeneity in
regression parameters. In other words, this approach leads to the possibility of di�erent marginal e�ects at each
target point. The basic idea behind LWR is to assign higher weights to observations near the target point when
calculating a point speci�c estimate. The measure of distance between observations has a natural geographic
interpretation in spatial modeling. The GWR approach is readily extended to Maximum-Likelihood Estimation
(MLE) methods as well. While a typical MLE procedure chooses estimates to maximize the log-likelihood
function, the geographically weighted version of MLE estimates a pseudo log-likelihood function, where the
log-likelihood function depends on the functional form of the regression model. See McMillen and McDonald
(2004), for more details.
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Assumption 8 implies that b is a nuisance parameter.6

In developing the GIPT estimator, we modify equation (A.22) in Graham et al (2012)7 by

incorporating kernel weights and a bandwidth parameter. If the researcher believes that the

potential outcome function G(·) is a non-parametric function, then we could transform both

t(·) and Di with some kernel weights8. More speci�cally, suppose one is interested in the �rst m

moments (however, the choice of number of moments to be included is described in more detail

in footnote 3 below). Then, we denote τ(ŵi(l)x
1
i ) = [1, ŵi(l)x

1
i , (ŵi(l)x

1
i )

2, · · · (ŵi(l)x
1
i )
m, ]′, as

a column vector where the weight ŵi(l) =
[
K
(
di(l)
b

)]1/2

, with K(·) being the Gaussian kernel,

b being the bandwidth parameter, m is the number of moments included, and di(l) being the

distance between observations i and target point L = l. This setup amounts to a non-parametric

speci�cation of the tilting parameters, δ0(l) and δ1(l) , as de�ned following Assumption 9 below.

Assumption 9. (Moment Conditional Expectation Function Model): For some unique matrix

Π∗ and vector of linear independent functions τ ∗(wi(l)x
1
i ) with a constant in the �rst row, we

have

E(Φ(y, γ0(l) | X) = Π∗τ ∗(wi(l)x
1
i ))

Graham et al (2012) describe the implications for over�tting the propsensity score depending

on the requirements of their Assumption 3.1 (analogous to our Assumption 9).9

6There is a large literature on kernel and bandwidth selection in nonparametric estimation. For kernel selection,
McMillen and Redfearn (2010) indicate that the results tend to be robust with respect to the speci�c functional
form of the kernel, but more sensitive to the bandwidth. Silverman (1986) proposes a "rule of thumb" bandwidth,
while others such as McMillen and Redfearn (2010) propose variations of cross validation techniques. In the
context of GIPT, we describe our bandwidth selection process below, which was somewhat di�erent in the Monte
Carlo simulations than with the empirical application of GIPT.
7In Graham et al (2012), they compute separate tilting parameters for the treatment and control groups by
solving an optimization problem that imposes a balance between the two groups. Among their assumptions
includes variants of our assumptions 1 through 5, but the location variable, l, is not included in their vector of
X. See our assumption 5 below for more details.
8In the case G(·) is a non-parametric function, a naive way to estimate treatment e�ect heterogeneity is to
estimate, e.g. using IPT, the conditional e�ects for each di�erent location, L = l. Our proposed method is
conceptually more appealing because G(·) at L = l is estimated using observations not only at location l, but
also observation in the surroundings. In addition, with our method, researchers can control how to use nearby
observations through the choice of kernel function and bandwidth. Furthermore, the spatial dependence is also
accounted for in our proposed method, through assigning higher weights to observations closer to the target
location and lower weights further away.
9Graham et al (2012) indicate that their Assumption 3.1 has implications for whether the propensity score needs
to include additional moments (when r(X) is contained within t*(X)) or when the opposite is true where a
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Analogous to equation (5) and (6) in Graham et al (2012), when our assumptions 1 through

8 hold, then at each target point l we have the following just-identi�ed unconditional moment

problem:

E
[

ŵi(l) ·Di

G (τ(ŵi(l) · x1
i )

′δ0(l))
Φ(X, Y, γ0(l))

]
= 0,(3.2)

E
[(

ŵi(l) ·Di

G (τ(ŵi(l) · x1
i )

′δ0(l))
− 1

)
τ(ŵi(l) · x1

i )

]
= 0.(3.3)

Our GIPT estimator chooses β̂GIPT (l) =
[
γ̂′(l), δ̂′GIPT (l)

]′
at each target point l to solve the

sample analogue of the above two equations10 , i.e.

1

N

N∑
i=1

 ŵi(l) ·Di

G
(
τ(ŵi(l) · x1

i )
′ δ̂GIPT (l)

)Φ(Xi, Yi, γ̂GIPT (l))

 = 0,(3.4)

1

N

N∑
i=1

 ŵi(l) ·Di

G
(
τ(ŵi(l) · x1

i )
′ δ̂GIPT (l)

) − 1

 τ(ŵi(l) · x1
i )

 = 0.(3.5)

Equation (3.5) is solved �rst, separately for each target point l, and the resulting tilting

parameter estimates for each target point l are plugged into equation (3.4) for each target point

l to obtain the estimate of the ATE at each target point, l.11

For computational simplicity, G is often assumed to take the Logit functional form, that is,

G(v) = exp(v)/[1 + exp(v)], and φv = 1/G(v). Let h = 0, 1 denote the treatment status of each

individual with “1” for treatment group and “0” for control group. Then to compute δ̃h(l),

for each target point the GIPT estimator solves the following optimization problem separately

for each target point l, adapted from equation (A.22) of Graham et al. (2012) to incorporate

multiple target points:12

replacement is made to "eliminate any overidentifying restrictions." In other words, IPT "over�ts the propensity
score if Assumption 3.1 requires us to do so..." (Graham et al, 2012). In our problem with GIPT, the analogous
carries through to GIPT, depending on what Assumption 9 requires us to do.
10While the proof of consistency, local e�ciency, and double robustness of our GIPT estimator is nontrivial, we
demonstrate the small sample properties of GIPT in the Monte Carlo study below.
11While it might be desirable to test restrictions among the ATEs, this is not a straightforward issue to imple-
ment.
12While there is no required minimum number of target points, the problem is only interesting when there is
more than one target point, as otherwise there will not be any ATE geographic heterogeneity.
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For each target point, l, choose δh(l) to

max L(δh(l)) = (1/N)
∑

iD
h
i ŵi(l)φ

h(τ(ŵi(l)x
1
i )
′δh(l))− (1/N)

∑
iτ(ŵi(l)x

1
i )
′δh(l)

where Dh
i is the treatment dummy for group h and φh are speci�c to group h. In this case

where there is a control group and one treatment group, then the notation for these dummies

can equivalently be reduced to (1−D) and (D), respectively.

The �rst order condition for this optimization problem is:

∂(L(δh(l)))/∂δh(l) = (1/N)
∑

iD
h
i ŵi(l)τ(ŵi(l)x

1
i )
′φhδ (·) − (1/N)

∑
iτ(ŵi(l)x

1
i )
′ = 0,

and the second order condition is:

∂2(L(δh(l)))/(∂δh(l))2 = (1/N)
∑
i

Dh
i ŵi(l)τ(ŵi(l)x

1
i )
′′φhδδ(·)

Graham et al (2012) show for IPT that φhδδ(·) < 0 (see their equation A.21), so that (L) is

strictly concave. It follows here that concavity holds for GIPT at each target point, l.

When the treatment status is denoted by h, where h = 0 is the control group and h = 1 is

the treatment group, it is reasonably straightforward to solve the optimization problem above

(analogous to equation A.22 in Graham et al, 2012) for δ̃h(l) for all l. The GIPT estimator

will lead to separate parameter estimates of δ̃h(l), l = 1, · · · , N . In contrast, the IPT estimator

includes a single estimate of δ̃h(l), for all l.

Our GIPT discussion below closely parallels parts of the IPT approach of Graham et al

(2012). When there is one treatment group and one control group, then let N1 and N0 denote

the number of treated units and untreated units, respectively. First, for the unit at target point

L = l in the treatment group, the GIPT estimator of δ, denoted by δ̃1, is a solution to:

(3.6)
1

N

N∑
i=1

 ŵi(l) ·Di

G
(
τ(ŵi(l) · x1

i )
′ δ̃1(l)

) − 1

 τ(ŵi(l) · x1
i ) = 0,
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where, given assumptions 5 and 9, G
(
τ(ŵi(l) · x1

i )
′
δ̃1(l)

)
= p(x) for all x ∈ X and some δ1,

τ(ŵi(l) · x1
i ) is a 1 + M column vector of known functions of X with a constant as its �rst

element, and δ̃1 is a vector of estimates of δ1. Following the logic of Graham et al (2012), the

propensity score for the ith unit in the treated sample can be written as:

(3.7) π̃1
i (l) =

1

N

ŵi(l)

G
(
τ(ŵi(l) · x1

i )
′ δ̃1(l)

) , i = N0 + 1, N0 + 2, · · · , N.

These two equations imply:

(3.8)
N1∑

i=N0+1

π̃1
i (l) · τ(ŵi(l) · x1

i ) =
1

N

N∑
i=1

τ(ŵi(l) · x1
i ).

Second, for the target point L = l in the untreated group, the GIPT estimator of δ0, denoted

as δ̃0(l), is the solution to:

(3.9)
1

N

N∑
i=1

 ŵi(l) · (1−Di)

1−G
(
τ(ŵi(l) · x1

i )δ̃
0(l)
) − 1

 τ(ŵi(l) · x1
i ) = 0, i = 1, · · · , N0.

Similarly, the propensity score for the ith unit in the control sample can be written as:

(3.10) π̃0
i (l) =

1

N

ŵi(l)

1−G
(
τ(ŵi(l) · x1

i )
′ δ̃0(l)

) .
These two equations imply:

(3.11)
N0∑
i=1

π̃0
i (l) · τ(ŵi(l) · x1

i ) =
1

N

N∑
i=1

τ(ŵi(l) · x1
i ).

In words, equation (3.8) states that after twice reweighting the moments of x1
i across treated

units, once with the propensity score parameters and once with the kernel weights, this equals

the (kernel weighted) moments of x1
i over the entire sample. An analogous relationship for the

untreated sample and the entire sample is in equation (3.11).
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The GIPT ATE estimate for the unit at target point L = l is given by

(3.12) γ̃GIPT (l) =
N∑

i=N0+1

π̃1
i (l)Yi −

N0∑
i=1

π̃0
i (l) · Yi

where π̃1
i (l) and π̃

0
i (l) are target point dependent and de�ned by (3.7) and (3.10).

With GIPT we estimate an ATE for each target observation. In footnote 21 of the Appendix

of Graham et al (2012), they describe the process for obtaining the overall ATE that is based

on the single treatment e�ect for each observation. Our approach to obtaining the ATE for

each target observation is similar to the overall ATE generation process outlined by Graham et

al (2012), but we modify the moments condition using τ(ŵi(l)x
1
i ) instead of t(x). With GIPT,

we obtain a very representative estimate of the ATE by generating an ATE estimate for each

target point, rather than generating one treatment e�ect for each target point and using these

to calculate one overall ATE. In applications where there are multiple target points, we would

expect GIPT would lead to a precise estimate of the ATE at each target point, and in turn, the

overall average of the ATEs may have lower bias than the estimated ATE from IPT. On the other

hand, in applications where the dimension of l is large, the performance of estimates of ATE

might be a�ected negatively, as we can expect from any nonparametric estimator, especially

when the sample size is small.

Finally, the proofs of GIPT consistency, local e�ciency and double robustness are nontrivial.

Therefore we next perform Monte Carlo simulations to demonstrate that for some bandwidths

the GIPT estimator performs well in small samples.

4. Monte Carlo Study

In our speci�c Monte Carlo Study we consider a model with heterogeneity in the geographic

locations of observations. 13 There are many di�erent possible applied real estate frameworks

13We looked into a possibility of including the CATE procedure in Abrevaya, Hsu, and Lieli (2015) and the
CATEF procedure in Lee, Okui, and Whang (2016) in our Monte Carlo study. However, both of those proce-
dures are conditioned on one confunder in their applications, while our GIPT procedure is conditioned on both
longitude and latitude variables. Even though the extension of CATE and CATEF to two dimensional data is
possible conceptually, the task of applying these estimators on our geographical data is much less straightforward.
Therefore, we did not include CATE or CATEF in this Monte Carlo study.
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for using GIPT. The setting we propose in this Monte Carlo study is particulary well-suited for

real estate applications, which is the primary focus of our application and our general interest

for applications where there is data "missing at random".14 We �rst denote the two-dimensional

vector, li = [l1i , l
2
i ] . In this Monte Carlo study we generate our response variables, yi, from the

following causal model and selection model:

(4.1) yi = β0(li) +DTi ·DSi · β1(li) + xi · β2(li) + ui,

(4.2) DSi =


1 for l1i + 0.25× l2i > 1.25

0 for l1i + 0.25× l2i ≤ 1.25

, i = 1, · · · , N

(4.3) DTi =


1 for i > N/2

0 for i ≤ N/2

, i = 1, · · · , N

where (4.1) is the causal model that produces the response variable yi, (4.2) and (4.3) is the

selection model that produces the treatment group. If DSi equals 1, this indicates that the unit

is in the location where some observations are treated and units with 0 will be in the control

group. Also, DTi is a dummy such that a value of 1 indicates an observation is only possibly

treated shortly after an unexpected event. Therefore, the treated sample will be comprised of the

observations for which Di = DTi×DSi = 1 ; in other words, the treated sample consists of those

units for which both DSi = 1 and DTi = 1. The vector li = [l1i , l
2
i ] is a two-dimensional location

vector generated from a bi-variate uniform distribution between [0, 2] , ui is i.i.d. following a

standard normal distribution; x1
i is a random variable generated from the normal distribution

N [0, 3], and vi is i.i.d from the standard normal distribution. Additionally, for simplicity we set

14It is not clear to what extent GIPT's performance would withstand an alternative application and/or dra-
matically di�erent Monte Carlo setup. Also, IPT may demonstrate more desirable properties than GIPT in
contexts where there is no geographic heterogeneity in the data. While this issue is worthy of future research,
our primary interest is real estate data applications, for which geographic locations are crucial.

15



β0(li) = 0 and β2(li) = 0.2, and β1(li) , our main interest in the estimation, is a variant of a

bi-variate standard normal density function:

β1(li) = 1
2π

exp
(
− (l1i )2+(l2i )2

2

)
.

Note that this data generating process - as given in (4.1) (4.2) and (4.3) - is designed to meet the

assumptions discussed in Section 3. First, the distribution of the outcome, Y , is independent

of the treatment status ("unconfoundedness"); Second, {Yi, Xi, Di}Ni=1are i.i.d. (the �random

sampling� assumption). Third, P(Di = 1|Y,X) = P(Di = 1|X) (The �missing at random�

assumption). Finally, P(Di = 1|X = x) = P(Di = 1) > 0, as Di and X are independent in

these data generating processes (The �strong overlap� assumption). The Gaussian kernel choice

satis�es the symmetry assumption and the bandwidth will be determined to satisfy Assumption

8 (it is a nuisance parameter).

We use two di�erent sample sizes, N = 300 and N = 600, as the number of individuals. This

model is estimated with a variant of di�erence-in-di�erences(hereafter denoted quasi-DID)15,

IPT and GIPT as de�ned in section 2. For the GIPT estimator, the optimal bandwidth for

each sample size is calculated through a grid search of 8 di�erent bandwidths. For a grid of b

values, the average squared error, ASE(b) = 1
N

∑N
i=1

{
γ̃(li)

GIPT − β1(li)
}2
, is computed for 100

replications and then averaged to estimate the mean ASE (MASE). The function MASE(b)

is then compared over the grid values of b. The optimal bandwidth, bMASE, is chosen to be

the value of b that yields the minimum MASE value. One optimal bandwidth is obtained for

each sample size for the GIPT estimator. For the N = 300 sample, the optimal bandwidth is

determined to be 0.85, and for the N = 600 sample the optimal bandwidth is 0.75. Next, using

the optimal bandwidth for each sample size, we perform 500 iterations for each sample size, and

then compute the average bias and ASE for each. The average bias and ASEs are reported in

Table 1. In addition, in Figure 1 we also plot the distributions, with histogram and estimated

15The quasi-DID model used here is Yi = β0 + β1Di + β2Xi + ei. We describe this as a variant of DID because
we assume that we do not have multiple observations for the same target point, as is the case in many real estate
applications.
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density, of the ASE results from the 500 repetitions on each estimator with two di�erent sample

sizes.

Since some preliminary �nite sample experimental evidence on the performance of the IPT

estimator is already available (Graham et al, 2012), we are primarily interested in the perfor-

mance of the GIPT relative to estimators that do not account for geographic variation. There

are general regularities that are evident. As expected, increases in the sample size reduce the

ASE for all estimators, suggesting that the estimators under study converge with sample size.

Across both sample sizes, the IPT estimator performs at least as well as the quasi-DID esti-

mator, in both ASE and average bias. Improvement of GIPT, as measured by MASE, over

IPT and quasi-DID, ranges from 49% for N = 300 to 57% for N = 600. The key implication

of these results is that in situations where geographic variation is an important factor in the

data, the proposed GIPT estimator provides a simple but e�ective way to account for it. The

ASE distribution plots in Figure 1 indicate a similar pattern. For each of the three estimators,

increases in the sample size from 300 to 600 generally shift the ASE distribution towards zero.

When the three estimators are compared with each other for the same sample size, the ASE

distribution of GIPT are much closer to zero than that of the other two estimators.

We also plot the GIPT estimated ATEs based on our simulations, in Figures 2b and 3b

(separately for N = 300 and N = 600, respectively). The corresponding true ATEs for these

samples are plotted in Figures 2a and 3a, respectively. While we do not plot the ATEs for IPT,

their plots would be a plane, as the IPT ATE does not vary by location (only the IPT treatment

e�ect varies by location). In comparing the GIPT ATEs against the corresponding true ATEs,

it is apparent that as the sample size increases from N = 300 to N = 600, the GIPT ATEs

more closely approximate the true ATEs. This implies that GIPT is likely to be a consistent

estimator of the true ATEs as the sample size increases.
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5. Application: Commercial Real Estate Prices in the Vancouver, BC Metro

Area

Similar to the purpose of the IPT application in Graham et al (2012), our application is

intended to illustrate the GIPT method as applied to a particular dataset and problem. The

metro-Vancouver area was hit with a series of major storms in November, 2006, which led

to severe mudslides that caused contaminated storm runo� to enter the water supply (Evans,

2007). Some parts of the metro area were required to boil water for an extended period of

10 days longer (i.e., 12 days total) than the rest of the metro area (CBC News, 2006). This

impacted restaurants, co�ee shops, and other water-dependent businesses (Dowd, 2006). The

a�ected area included the City of Vancouver, while the adjacent City of Richmond (and many

other parts of the metro area) had the advisory lifted on the second day. This may have been

a type of information shock, which could in�uence the probabilities of similar advisories from

future storms. We examine how sale prices for properties that sold within several months

after this advisory in a section of Vancouver (the treated sample) were a�ected di�erently from

other properties sold in the same section of Vancouver several months before the advisory and

properties that sold in nearby parts of Richmond before and after the advisory (the control

sample). Thus, our identi�cation strategy relies upon an unexpected event (the extended water

boil advisory) that a�ects some geographic areas but not others. We have a missing data issue

with this data set, because we know what properties in the control group sold for, but we do

not know what these properties would have sold for if they had been in the treatment group.

Thus, a propensity score type of approach would be desirable. Meanwhile, there are clear

di�erences in the geographic locations of properties in our sample. It is of interest to determine

empirically how the e�ects of such a shock might be absorbed di�erently into property values

across locations. Therefore, we consider three di�erent approaches in this application, a variant

of quasi-DID; IPT; and GIPT. Recall that we call the �rst of these approaches a quasi-DID

approach because we do not have panel data in this particular real estate application (in other

words, we do not have repeat sales observations over time).
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There is a literature that examines the e�ects of a storm on property values, including Bin et

al (2013), Atreya and Czajkowski (2016), and others. None of this literature, however, considers

the missing data problem in the same context or with the same approach as we are addressing

it here. Also, most of the other studies in the literature focus on residential property values,

while our application examines the commercial property value impacts (which is important in

our context because many businesses in our sample are water dependent). Finally, we study

the impacts of the storm using a quasi-experiment of the e�ects of a water boil advisory that

was imposed on some areas of the metro area, including the City of Vancouver, for much longer

than others. Therefore, we can examine the di�erential impacts of the water boil advisory on

treated versus control areas, shortly before versus shortly after the advisory.

In the real estate �nance and investments literature (e.g., Ling and Archer, 2017), a commer-

cial property's value or sale price can be approximated by the ratio of its net operating income

(NOI) to the capitalization rate (i.e., cap rate). In some cities, such as New Orleans, a major

storm (i.e., a hurricane) such as Katrina led to property destruction as well as major disruption

in abilities of businesses to operate for an extended period of time. In theory, if there is an event

that alters an investor's estimate of basic long term risk, then such an event is often accompa-

nied by an increase in the cap rate. In New Orleans, this increased risk likely led to a higher

cap rate, due to the possibilities of repeat storm events in the future, which lowered the value

of commercial properties. The storm also lowered the properties' NOI due to lost revenues, etc.

People may have revised their estimate of New Orleans' vulnerability because of rising sea levels,

eroded barrier marshes, etc. Although the impacts of the storm in Vancouver may have been

somewhat di�erent, this 12 day extended water boil advisory in the city of Vancouver caused

major disruption of some business operations, especially for those that were water-oriented such

as supermarkets, restaurants, day care facilities, etc (Dowd, 2006; CBC News, 2006). Such a

disruption can be expected to lead to greater long-term risk of a repeat event for all properties;

and/or lost revenues or additional insurance costs, for instance, for certain businesses that are

water dependent. These �nancial losses can be expected to impact their NOI, which translates

into an e�ect on property values and in turn, the sale prices of many properties. But other
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commercial property sale prices may not be a�ected, perhaps because they may not be as water

dependent.

When we are estimating the ATE of the extended water boil advisory on the price per square

foot of living area for commercial properties, the lot size (building area plus land area) of the

property is expected to be negatively correlated with the NOI (and in turn, the total sale price).

This is due to the fact that a larger lot size requires higher expenses for lawn maintenance and

snow removal, for instance. But the e�ect of lot size on the price per square foot of living

area may be either positive or negative. A larger lot size may or may not lead to economies of

scale that are inherent in the maintenance of a commercial building. Greater economies of scale

are expected to lead to higher NOI and therefore a higher price per square foot of the overall

property. There also may be particularly strong price e�ects for older properties, or properties

that have not been renovated recently. These older properties may be expected to rent for less,

need more repairs, and require more to upkeep due to unanticipated issues resulting from the

age of the property. This can also be expected to factor into the NOI for a property. In other

words, an older property, or one that has not been renovated recently, should have a lower NOI

than a similar, nearby property that has been renovated recently. Therefore, it is important to

use the lot size and the e�ective age as a proxies for NOI, especially since we do not have direct

estimates of NOI in our dataset. The e�ective age is the number of years between the year of

most recent sale and the last major renovation of a property. Properties that were renovated in

the year in which they were most recently sold have an e�ective age of 0. Similarly, properties

that have never been renovated have an e�ective age equal to the actual age of the property.

In our model speci�cations, we use as the control variable the interaction term of lot size (in

thousand square feet) and the e�ective age of the property (in years). For reasons described

above, these two variables are the two best proxies for NOI that we have available to us. Also,

in the IPT and GIPT speci�cations, when we try to include two separate quasi-DID terms for

these two variables, using the �rst two moments of each, the model is unable to solve. We are

interested in the ATE from the extended water boil advisory, and we desire to control for the

lot size and e�ective age as proxies for NOI but are not directly interested in their marginal
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e�ects. Therefore, using the interaction term enables us to control for both of these factors as

proxies for NOI. Finally, Graham et al (2011) and Anderson (1982) suggest interaction terms

be included in these types of propensity score models. So for all of these reasons, we use the

�rst two moments of the interaction term in the IPT and GIPT speci�cations. Obviously, for

consistency across speci�cations, we use the interaction term in the quasi-DID model as well.

The impact of a change in cap rate associated with long-term risk due to the storm is re�ected

in the treatment e�ect dummy. Property owners are expected to adjust their forecasts of long-

term risk after the storm, and this is re�ected by the treatment e�ect estimate. One would

expect property owners in di�erent locations to have di�erent forecasts of long-term risk, and

therefore we might expect heterogeneity in the ATE estimates.

Also, in these types of treatment e�ect studies it is recommended to exclude observations in

a bu�er zone of properties that are excluded from the analysis (see, for instance, Angrist and

Pischke (2009)). Therefore, we restrict our attention to a section of the metro area where some

observations are in the City of Vancouver (which was subject to the water boil advisory for 12

days after the storm) and others in nearby parts of the neighboring City of Richmond (which

had the water boil advisory lifted after one day). We avoid including properties outside of this

bu�er zone, e.g., in the central business district of Vancouver, where there are potentially many

other confounding factors. Our focus on properties in the City of Richmond near the Vancouver

border allows for a bu�er zone consisting in properties in the western part of Richmond. We

focus on a period of several months before, and several months after the 12 day water boil

advisory which occurred for the City of Vancouver in November 2006. The choice of this time

period allows for a bu�er in the temporal dimension. We end our sample in August 2007 because

we want to avoid the e�ects of the recession that started in late-2007, and we begin in January

2006 because we want to avoid other events that might have impacted property values before

2006 (thus, creating a temporal bu�er beyond several months around the date of the storm).

In our data set, there are 96 commercial sales observations in the selected neighborhoods

between January 2006 and August 2007 for which there are also data on sale price, square
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footage, lot size and the e�ective age. Figure 4 shows the locations of our sample of 96 com-

mercial properties that sold (as arms-length transactions) in parts of the City of Vancouver

and City of Richmond between January 2006 and August 2007. These data are from the BC

Assessment database, which were purchased from Landcor.

Descriptive statistics are presented in Table 2. The average commercial property sold for

approximately C$ 215 per square foot, had a lot size of about 35,000 square feet, had an e�ective

age of 38.76 years (i.e., on average there were 38.76 years since the last major renovation), and

26 percent of the observations were in the treatment group (i.e., in the City of Vancouver -

opposed to the City of Richmond - and sold after the extended water boil advisory was imposed

on the City of Vancouver).

We �rst estimate the following variant of a quasi-DID model: Yi = β0 +β1Di+β2Xi+e, where

Yi is price per square foot for property i, Xi is the product of the lot size and the e�ective age.

We assume that e is an i.i.d. error term with mean 0 and constant variance, and E(eiej) = 0

for i 6= j. Di = 1 for those properties in our data set that sold between November 2006 and

August 2007 (i.e., after the extended water boil advisory), inside the City of Vancouver; and

Di = 0 for properties that sold in the City of Richmond before and after the advisory, and those

properties that sold in the City of Vancouver before the advisory. The regression coe�cient β1

is the �treatment e�ect� of locating in the City of Vancouver after the storm.

The second model we estimate is IPT. We consider the �rst 2 moments so that t(x) =

[1, X,X2], and X is the product of the lot size and e�ective age, and Y is the sale price per

square foot. We reweight the X's so that the sample mean and variance of X in the treated

sub-sample (and separately, in the untreated sub-sample) equals the entire sample mean and

variance of X. We utilize the same data set as we used for the quasi-DID estimation. We

calculate the ATE using IPT.

Finally, we estimate the GIPT model, with Gaussian kernel weights given as

(5.1) ŵi(l) =
[
exp(−0.5 ∗ (di(l)/b)

2)
]1/2

,
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where di(l) is the Euclidean distance between property i and location l, and b is a bandwidth

parameter. We explain the bandwidth determination in more detail below. In the GIPT model,

we consider the �rst two moments and use τ(ŵi(l)X) = [1, ŵi(l)X
1
i , (ŵi(l)X

1
i )2] for each target

point, l. In this context, we are re-weighting by including distance weights in the propensity

score weighted averages of X1
i so that the re-weighted mean and variance of X1

i for the treated

sample equals the re-weighted mean and variance for the entire sample.

We present the quasi-DID and IPT results in Tables 3 and 4. First, with quasi-DID the

treatment dummy, Di, has a coe�cient estimate of β2 = −49.97, implying that the typical

commercial property in the treated sample sold for approximately C$ 49.97 less per square foot

than the typical property in the control sample. However, β2, the ATE estimate, is highly

insigni�cant (t-statistic=-1.24). With IPT, the ATE is C$ -50.37 (with t-statistic of -2.13),

indicated by the coe�cient �ate gamma� in Table 4.

With the GIPT approach, we �rst must determine the appropriate bandwidth. We �rst

contemplate a �Rule of Thumb� bandwidth, as in Silverman (1986). However, this criterion

requires normality of the distances data in order for it to be applicable. An informal examination

of the locations of the properties in Figure 2 indicate that it is inconclusive as to whether

the distances have a normal distribution. Therefore, without evidence of normality of these

distances data, we perform an informal grid search to estimate bandwidths in the range of 0.03

and somewhat higher and lower, moving up and down in units of 0.01. Bandwidths smaller

than 0.03 cause di�culties in the GIPT estimations that preclude it from solving for many of

the target points, since with smaller bandwidths there are fewer observations given nonzero

weight in the estimation. Therefore we choose the smallest of these bandwidths, h=0.03, for

which the GIPT estimations have su�cient observations to solve, and we rationalize this choice

as follows. The smaller the bandwidth choice, the greater amount of variation in the parameter

estimates is possible. In fact, as we experimented with increasing the bandwidth above h=0.03,

the variation in the ATE estimates from GIPT across observations decreases dramatically, in

general approaching the ATE estimate from IPT for the higher bandwidths. This result is

expected, as with a higher bandwidth there are more observations receiving positive weight
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than with a lower bandwidth, so the GIPT ATE estimates with the higher bandwidths closely

approximate the IPT ATE estimate.16

We next estimate the ATEs for all target points, l, using the GIPT estimator that we have

developed in this paper. Figure 5 shows the ranges of ATEs of the metro-Vancouver area with

the locations of the sample of commercial properties that sold in the period of our sample. This

range is C$ 8.08 to approximately C$ -61.90 , but the former ATE has a relatively large standard

error and is statistically insigni�cant. Most of the larger ATEs are statistically signi�cant

(P-value<0.05). Figure 4 demonstrates the locations of properties with ATE that have P-

value<0.05. We take the mean of all of the 96 ATEs (which we denote as the �AATE�), in

Table 5. The AATE equals approximately C$ -38.38, while the mean of the standard errors is

C$ 22.54. In general, the properties with the most negative and signi�cant ATEs are located in

the central and south areas of Richmond and central Vancouver, while those with statistically

insigni�cant ATEs are in east Vancouver.

While the ATEs from quasi-DID and IPT are statistically insigni�cant, with GIPT we �nd

that most of the 96 observations have negative ATEs, but 85 out of the 96 observations have

statistically signi�cant ATEs (with P-value<0.05). Thus, using GIPT enables us to unmask

which speci�c locations would be signi�cantly impacted by the storm related water boil advisory

and which would not. Interestingly, many of the properties with signi�cantly negative ATEs

are concentrated in 5 distinct neighborhoods of Richmond (which did not experience the 12-day

extended water boil advisory).

Within each of these 5 neighborhoods of Richmond, at least one (and sometimes several) of

the properties in our sample are in a water-intensive industry. For instance, in a neighborhood

around Horseshoe Way in the southern part of Richmond, there is a company that manufactures

liquid cleaning products and health/beauty products. Nearby there is a recycling center and a

millworks production company. While we expect the ATE of the liquid product manufacturing

company property to be a�ected by an extended water boil advisory, the ATE of the other two

16For illustrative purposes in this empirical application, we select the smallest bandwidth for which the GIPT
model is still able to solve. However, a more formal approach would be to follow an algorithm for the bandwidth
selection, such as bootstrap bandwidth selection or Mean Average Squared Error (MASE) methods.
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companies properties in the same neighborhood are likely to be impacted by their proximity to

the liquid product manufacturing company property. About 0.5 km south of this neighborhood

is another cluster of properties with large negative, and statistically signi�cant ATEs, including

one where there is a company that processes �sh products for use as fresh and preserved bait;

nearby there is a produce market that undoubtedly relies on water to clean its produce; and an

event planning company. In this situation, the �sh products company and produce market may

have a strong impact on the ATE of the event planning company due to its close proximity.

Approximately 3 km north of this neighborhood (10011 Blundell Road in Richmond), there is

a daycare facility with a statistically signi�cant ATE, which was formerly a convenience market

and the daycare moved into the space subsequent to the storm. The property may have had a

negative, statistically signi�cant ATE because the property relies daily on clean water for the

children and sta� to wash hands, dishes, etc, and if it had been in the treated group, this would

have been expected to lower the value of the property. On the other hand, there is a daycare

facility in Vancouver (3165 Kingsway, Vancouver) with a statistically insigni�cant ATE, which

may be somewhat surprising, although perhaps this facility relies more on hand sanitizer and

other less water-intensive ways to keep its students clean. A more plausible explanation is the

fact that at this address there is also a lighting store that is likely not water intensive, so the

presence of this store may o�set the e�ect on the property's overall ATE from the daycare.

Approximately 2 km to the northwest of the daycare in Richmond is a restaurant/bakery, and

an o�ce building. In this case, the restaurant/bakery clearly would be impacted by an extended

water boil advisory, while the ATE of the o�ce building may be impacted due to the proximity

to the restaurant/bakery. Finally, approximately 0.5 km north of the restaurant/bakery there is

a cluster of 4 other properties that have statistically signi�cant (negative) ATEs. These include

a large shopping plaza with restaurants, a co�ee shop, doctor's o�ces, a drug store, and other

o�ces. Very close to this shopping plaza is an automobile repair garage, a dermatology o�ce,

and an o�ce building. It is likely that the water dependency of many of the businesses in the

shopping plaza is one explanation for a signi�cantly negative ATE for that property, while the
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signi�cantly negative ATEs for the other nearby properties may be at least in part determined

by proximity to the shopping plaza.17

Finally, one might argue that a fuzzy regression discontinuity framework could be appropriate

for this particular problem, as in Angrist and Pischke (2009). But this is not the case in our

speci�c application. The propensity score,

p(x) = Pr(Di = 1|Xi = x) = E[Di|Xi = x],

does not necessarily jump at any particular value of x. There are both large and small lot sizes

in our sample of properties in Richmond and Vancouver, and also there are both old and new

properties in both cities as well. Therefore, our X, the interaction term of lot size and e�ective

age, does not have a natural jump point in the probability of treatment at any speci�c value

of x. In future work, it may be of interest to explore how to address potential fuzzy regression

discontinuity in the context of IPT and GIPT, for speci�c applications where at particular

values of x there is a natural jump point in the propensity score.

6. Conclusion/Discussion

We develop a GIPT estimator that allows for ATE heterogeneity across target points. We also

present some evidence on the desirable small sample performance for one speci�c type of model

commonly used in real estate applications, with Monte Carlo simulations. We demonstrate the

17One might conjecture that some of the di�erences in ATEs in the treated area (in the City of Vancouver
after the boil water advisory) versus the control area (in the City of Richmond before the boil water advisory,
and both Richmond and Vancouver before the advisory) may be due to di�erences in property tax rates in the
two cities in these two years. We informally examined the property tax rates in these two cities in 2006 and
2007, and found that the 2006 base rate in Richmond for class 6 properties (commercial) was C$ 22.38361 per
thousand dollars of assessed values. There were some additional add-ons for sewer debt, which ranged between
C$ 0.23300 and C$ 0.28300 in 2006, implying a total tax rate of approximately C$ 22.64 per thousand dollars of
assessed value. There is an additional parking tax for Richmond properties with parking, at a rate of C$ 0.78
per square meter of parking spaces. The 2007 tax rate in Vancouver for Class 6 properties (commercial) was
C$ 24.87171. Therefore, there is a di�erence of approximately C$ 2.23 per thousand dollars of assessed value.
Assuming this di�erential is expected to persist inde�nitely into the future (i.e., an in�nite time horizon), and
a discount rate of 5%, this implies a di�erence of C$ 2.23*(1+0.05)/0.05 over the life of the property, or a total
expected property tax di�erential of C$ 46.83 per thousand dollars of assessed value. We assume the sale price
of a property is highly correlated with its assessed value. Then, if the ATE is C$ -45 for a property that sold in
Richmond before the water boil advisory in 2006, for instance, then C$ 2.10 of this C$ -45, or less than 5% of
the ATE, can be attributed to expected di�erences in property taxes in the two jurisdictions in the two years.
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use of this GIPT estimator in an application of how a major storm that leads to an extended

water boil advisory in some areas impacts property prices di�erently in a major Canadian

metro area. The GIPT estimator can be a useful technique to generate ATEs for each target

location, and re-weight with propensity scores when there is missing data. As we show in our

application and in our simulation study, there are several bene�ts, as well as some potential

limitations, of using the GIPT approach in these types of applications. One advantage of GIPT

is that we are able to generate heterogeneous ATE estimates for each target point. These GIPT

ATE estimates approximate a smooth ATE surface in large samples. We can also test for the

statistical signi�cance of each of the ATEs. The average of the ATE's, or the AATE, is one way

of summarizing this information over all target points, if so desired. In our speci�c application,

one may be particularly interested in the ATE estimates that are statistically signi�cant, in order

to determine where remediation should be undertaken to try to prevent similar damage to the

water supply in the future. There are many other potential missing data problem applications

of the GIPT estimator where it would be desirable to generate heterogeneous ATEs.

Another advantage of using GIPT in applied real estate settings, as demonstrated by our

speci�c Monte Carlo simulations, is that the bias and average squared errors of the GIPT es-

timator appears to be lower than for the quasi-DID and IPT estimators. Even when there is

heterogeneity in the ATE estimates, GIPT is a more computationally intensive procedure and in

some cases this may diminish its feasibility, especially in very large samples. However, there are

approaches to address this issue in the nonparametric estimation literature, including limiting

the number of target points to obtain a representative sample of ATE estimates. As we have

demonstrated in our real estate application, the GIPT approach can extract important infor-

mation about which individual observations have statistically signi�cant ATEs, and it allows

for heterogeneity in the magnitudes of the ATEs across space.

Clearly, there are advantages to both the IPT and GIPT approaches to addressing the data

"missing at random" problem in generating heterogeneous estimates of ATE's that vary by

geography. There is also evidence that GIPT is superior to quasi-DID. GIPT performs much
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better than quasi-DID in our Monte Carlo simulations, and this is to be expected, in part

because quasi-DID ignores the missing data problem.

In future work, it would be of interest to consider modifying the GIPT framework to contexts

where there is a balanced panel dataset (e.g., space-time), to address a broader array of applied

missing data problems.18 Such extensions could also contribute to the literature on ATE het-

erogeneity by allowing for the possibility that the ATE could vary over target points and also

over a long period of time.
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Appendix A. Figures

Figure 1: Simulation Results on Average Squared Errors (ASE) Distributions From quasi-DID, IPT and GIPT 19 20

19In the ASE for GIPT (N=300) plot, one observation (an outlier value) was dropped for the convenience of plotting.
20Observe that 1.Increases in sample sizes reduce ASE for all estimators; 2. Across both sample sizes, ASE distributions from GIPT are closer to
left (i.e., zero) and narrower, compared to that of quasi-DID and IPT, suggesting that the GIPT estimator outperforms both quasi-DID and IPT.
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Figures 2 and 3: Simulations Scatter-plots - The True ATEs and the GIPT Estimates
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Figure 2a: True ATEs for 300 Observations Simulations, Repetition #1
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Figure 2b: ATEs from GIPT for 300 Observations Simulation, Repetition #1
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Figure 3a: True ATEs for 600 Observations Simulations, Repetition #1
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Figure 3b: ATEs from GIPT for 600 Observations Simulation, Repetition #1
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Figure 4: Properties with Statistically Signi�cant ATE from GIPT Estimations21
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Figure 5: ATE Values from GIPT Estimations
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Appendix B. Tables

Table 1: Simulation Results - Small Sample Performances for GIPT, IPT and quasi-DID22

GIPT IPT quasi-DID

Sample Size = 600

Bias .0074211 -.0408718 -.0408698

ASE .0025323 .0058796 .0058782

Sample Size = 300

Bias .0015103 -.0410462 -.0410958

ASE .0031035 .0060545 .0060559

22The bandwidth used for GIPT is 0.75 with N=600 and 0.85 with N=300. See section 4 for more details of the
bandwidth selection algorithm.
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Table 2: Descriptive Statistics, Vancouver Application 
 (1)     
      
 mean sd min max count 
sale price per square ft 215.9012 169.2998 20.60159 1128.099 96 
Effective Age 38.76042 12.05142 9 70 96 
Lotsize(thous sqft) 34.92404 49.13306 2.76459 246.88 96 
Treatment Dummy .2604167 .4411657 0 1 96 

 
 
 
 
 
 
 
 
 
Table 3: Quasi-DID Model Results, Vancouver Application 
 (1) 
 sale price per square ft 
ATE -49.97 
 (-1.24) 
  
[effective age]x[lotsize(thous square feet)] -0.0467* 
 (-1.69) 
  
([effective age]x[lotsize(thous square feet)])^2 0.00000289 
 (1.04) 
  
Constant 270.3*** 
 (8.94) 
R-sq 0.069 
N 96 

t statistics in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
 

36



 

Table 4: Inverse Probability Tilting Estimation Results, Vancouver Application 
 (1) 
  
delta1  
[effective age]x[lotsize(thous square feet)] -0.000775** 
 (-1.98) 
  
([effective age]x[lotsize(thous square feet)])^2 9.42e-08** 
 (2.21) 
  
Constant -0.641** 
 (-1.97) 
delta0  
[effective age]x[lotsize(thous square feet)] -0.00198 
 (-1.35) 
  
([effective age]x[lotsize(thous square feet)])^2 0.000000229 
 (1.43) 
  
Constant -0.0760 
 (-0.13) 
ate  
gamma -50.37** 
 (-2.13) 
Observations 96 

t statistics in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
 
 
 
 
 
 
 
 
Table 5: Geographic Inverse Probability Tilting Results, bandwidth=0.03 
 (1)     
      
 mean sd min max count 
ATE -38.38539 18.17553 -61.90205 8.08882 96 
Standard Errors of ATE 22.54444 1.739582 18.68966 26.44306 96 
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