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1. Introduction 

 

Major U.S. hurricanes in 2017, including Houston (Harvey) and Florida (Irma), and 2012 in New 

York City (NYC) (Sandy) are examples of how flooding damage can unexpectedly extend 

beyond the Federal Emergency Management Agency (FEMA) designated flood zones.1 

Surprises/shocks to flood risks can provide property owners—including those not flooded—with 

new information about future flood risks, based on how close these dry properties are to the 

actual flooded areas. We quantify how flood risk shocks impact non-flooded property values. 

One innovation is that we use information on repeat property sales that sold once before and 

again after Sandy to estimate a separate shock effect for each dry property. Using locally 

weighted regressions (LWRs), we investigate heterogeneous effects across NYC, and present 

results in several maps. We addresses demand and supply effects from the storm and possible 

sample selection.  We find properties showed the most volatility within the older, denser urban 

core, mostly in those neighborhoods that appear to be gentrifying.   

 

Harvey struck the Houston, Texas area in late-August 2017. Preliminary damage assessments are 

in the range of $150 billion (McWilliams and Marianna, 2017), with thousands of houses 

destroyed and many other residential and commercial sustaining major damage. In September 

2017, Hurricane Irma hit Florida, with waist-deep flooding in downtown Miami (Sun-Sentinel, 

2017), among other areas. Total costs of Irma could reach as high as $300 billion (Wood, 2017). 

On October 29, 2012, Hurricane Sandy made landfall in NYC; it was arguably the largest and 

most damaging storm to hit the region. The surge level in lower Manhattan was 13.88 feet, 

surpassing the old record set in 1960 (CNN, 2013).  Loss estimates for NYC were $19 billion, 

and $33 billion for the entire state.2  

 

Studies have focused on estimating the damage costs (ESA, 2013). However no known work has 

explored the implicit costs of storm surges on the value of NYC real estate for properties not 

damaged by the surge. Understanding how flooding affected dry properties is important because 

it gives clues to the impacts of higher future storm surge risks. Which neighborhoods react the 

most and why? We develop new methodologies to investigate real estate price volatility from  

expectations about future surges, by focusing on real estate price changes for non-flooded 

properties. 

 

In 1968, Congress created the National Flood Insurance Program (NFIP) to help property owners 

protect themselves. The NFIP offers flood insurance to homeowners, renters, and business 

owners if their respective town or city participates in the NFIP. Participating communities agree 

to adopt and enforce ordinances that meet or exceed FEMA requirements to reduce flood risk 

(FEMA, 2017b). 

 

                                                            
1 For Harvey see: https://www.nytimes.com/interactive/2017/09/01/us/houston-damaged-buildings-in-fema-flood-

zones.html?mcubz=1&_r=1. 
2 For NYC see: http://www.nyc.gov/html/sirr/downloads/pdf/final_report/Ch_1_SandyImpacts_FINAL_singles.pdf. 

https://www.nytimes.com/interactive/2017/09/01/us/houston-damaged-buildings-in-fema-flood-zones.html?mcubz=1&_r=1
https://www.nytimes.com/interactive/2017/09/01/us/houston-damaged-buildings-in-fema-flood-zones.html?mcubz=1&_r=1
http://www.nyc.gov/html/sirr/downloads/pdf/final_report/Ch_1_SandyImpacts_FINAL_singles.pdf
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FEMA partners with states and communities through the Risk Mapping, Assessment, and 

Planning (Risk MAP) program to identify flood hazards and assess flood risks. These data are 

incorporated into Flood Insurance Rate Maps (FIRMs), which support the NFIP and provide the 

basis for community floodplain management regulations and flood insurance requirements. Most 

commonly used for insurance purposes are the 100-year floodplain maps, which are regions 

designated to have a 1% chance of being inundated each year.  

 

Buyers who seek a mortgage are often required to purchase flood insurance if they are within a 

FEMA-designated floodplain (FEMA, 2017a). These floodplain maps are a publicly-available 

assessment of the likelihood of a property being flooded. For those outside the floodplain, the 

distance to the plain can presumably be used to infer the neighborhood’s relative flood safety. At 

20 feet from a floodplain, a property is potentially at more risk than one 2,000 feet away.  

 

Our goal is to estimate how properties that remained dry may be impacted by storms. If the 

Hurricane represents an informational shock about the likelihood of future damage then this may 

be priced into properties, as people reassess the likelihood of future storm shocks and associated 

potential damage.  

 

Because urban real estate is part of an urban system, the effects of one neighborhood’s property 

value changes depend on surrounding neighborhoods. Measuring average effects do not control 

for or measure the locational interdependencies. For instance, with Sandy, the farthest property 

away from the surge was only three miles; most parts of the city are relatively low lying.  So, 

vast swaths of the city could be susceptible to future surges. 

 

This paper employs several innovative statistical techniques to assess the expectations of the real 

estate market. In addition to repeat sales, we estimate changes in the average prices over time for 

each borough, to control for market-wide fluctuations independent of the storm surge.  

 

Next, we use LWRs, as in Cleveland and Devlin (1988), which has longstanding roots in the 

geography literature. Because ordinarily least squares (OLS) regression estimates cannot capture 

heterogeneity in the price response across neighborhoods, we determine heterogeneous 

coefficient estimates for each property with repeat sales approach using LWR. If price volatility 

were uniform city-wide, we would not reject the null hypothesis of uniform coefficients across 

boroughs. In our specific application of NYC, our tests on the sample of repeat sales properties 

reject this null hypothesis and suggest that while the price of many dry properties across the city 

were not significantly affected by the storm, others did see price effects due to the storm. LWR 

enables this exploration of heterogeneous effects for each property.  

 

This paper demonstrates that these effects often can be heterogeneous across geographic 

locations. Two similar buildings in their age, use, and quality, and the same distance from the 

storm surge, can be impacted by the storm differently, based on the economic and demographic 

profile of the neighborhoods. OLS coefficient estimates represent averages for an entire city, and 

by focusing on averages, one may miss important local variations. When investigating the 

geographic impacts of storms on cities, it is vital to understand spatial variation; this is crucial 
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not only for measurement reasons but for the policy implications about where to deploy 

resources before/after storms. 

 

Using LWRs for three different property classes,3 we find significant variation in price change 

responses to the storm surge. In Staten Island and the Bronx, we find relatively less reaction to 

the storm, while in Queens and Brooklyn we find strong price reactions to the surge (relative to 

the FEMA line). The price effects for Manhattan are weak for one and two family homes (of 

which there are relatively few) but stronger for apartments buildings and commercial properties.  

 

Later we regress the LWR coefficients on several control variables. Across property types the 

responses to closer proximity to the surge were much greater closer to the Empire State Building, 

all else equal. We also find evidence that census tracts with better subway access and higher 

incomes (for homes and offices) were more responsive to these “shocks.” We infer this likely to 

be due to gentrification and the rising value the residents are placing on proximity to the city 

center; it is likely that wealthier people moving to the center might be more responsive to these 

shocks.  

 

The next section provides a literature review on the effects of storms and storm surges on real 

estate prices. Section 3 provides the background on our methodology that informs the statistical 

analysis. Section 4 provides information on the data set for the Hurricane Sandy application. 

Sections 5 and 6 provides evidence on the effects of the storm surge on both flooded non-flooded 

properties throughout the city, using hedonic regressions and LWRs, respectively. In Section 7, 

we test for reasons why there were heterogeneous effects across the city, and we also test for 

spatial stationarity. Finally, Section 8 offers some concluding remarks. The appendices provide 

information about data sources and LWRs.  

 

2. Literature Review 

 

Hurricanes Harvey in Texas and Irma in Florida demonstrate the FEMA flood zones remain an 

imperfect measure of flooding likelihoods (Fessenden, et al., 2017).  Some studies investigate the 

impacts of storms or natural disasters on real estate. These include studies of specific hurricanes4 

, and the proximity to the coast or flood risks. For instance, Faber (2015) examines how flood 

risk from Hurricane Sandy impacted various demographic groups differently. He finds that both 

demographics and economic factors are important considerations for flood risks.5   

 

Heitz et al (2009) examine one catchment area in France, and conduct landowner surveys to 

understand flood risk perceptions. These perceptions vary, depending on whether respondents 

are inside an “erosion” area or “sedimentation” area. They also find approximately half of 

landowners trust government flood-risk information. 

 

                                                            
3 See Appendix A for information about the data set.  
4 Although not directly focused on flood risk, another recent study examines NYC housing prices and Hurricane 

Sandy. Specifically, Ortega and Taspinar (2016) examine Sandy and the NYC housing market, and address whether 

housing demand shifted towards less exposed areas.  
5 We consider demographic factors in our analysis presented in Table 8. 
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Bin and Landry (2013) find unexpected flood risk effects following a major storm disappear after 

several years. They find a 5%-9% discount following Hurricanes Fran and Floyd in North 

Carolina. More recent data indicate higher short-term discount rates.  

 

Bin et al. (2011) focus on a similar geographic area in North Carolina to estimate value of lost 

property from potential flooding. For a 20-to-70 year future period, they forecast between $179-

$576 million loss for properties in four North Carolina shore counties, implying hurricanes pose 

tremendous risk.  

 

An earlier flood risk study is MacDonald et. al (1987), who estimate hedonic house price 

functions for a flood-prone area (Monroe, Louisiana). They provide examples for a small sample 

of homes, and find that for these houses a higher flood risk leads to a $2000-$8000 decrease in 

sales prices.  

 

In another coastal study of flood risks, Atreya and Czajkowski (2016) use a spatial regression 

model to study price effects of proximity to the coast in Galveston, Texas. They find within ¼ 

mile from the coast, properties sell for more than farther away properties.   

 

Hammond et al (2015) consider urban flooding impacts by providing a literature review. They 

argue that understanding flood impacts is crucial for building cities that are flood “resilient” 

(which is important for mitigating flood risks).  

 

With these studies in mind, we now turn to our approach for measuring changes in dry property 

flood risk impacts. 

  

 

3. The Theory of Price Effects 

 

Our aim is to understand how a storm shock can affect those properties that were not damaged 

by the storm. For many property owners the storm represented new information on the potential 

damage due to storm surges. A priori, however, the effects of a storm on the dry side of the storm 

surge can be unclear. On the one hand, the surge was a negative shock to the city, and, as a 

result, it represents the possibility that the city is subject to future surges. Those property owners 

relatively close to the surge are particularly vulnerable. This can be called the demand effect, 

where a negative neighborhood shock would reduce the demand for real estate and thus reduce 

its price. 

 

On the other hand, there are likely to be supply effects. First, properties in the flooded zone were 

damaged or destroyed, which would reduce the quantity/quality of available properties in a 

particular neighborhood; this would have the effect of making the remaining structures relatively 

more valuable. There are also likely to be second order effects of shifting demand from the wet 

part to dry part. If properties in “gentrifying” neighborhoods experience a loss of real estate due 

to the surge, but the neighborhood remains in strong demand overall, then the relative demand 

within a neighborhood might positively shift to the dry properties. Thus, the dry properties may 

receive two benefits that could raise their prices—the relative scarcity of structures in a 
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neighborhood near the flood will increase their price, and shifting relative demand within the 

neighborhood could also drive up the prices of dry properties. 

 

Our variable of interest is the difference between the closest distance of a property to the FEMA 

floodplain relative to the closest distance to the storm surge. That is, we estimate: 

 

∆𝑙𝑛𝑃𝑖 = 𝜃𝑠ℎ𝑜𝑐𝑘𝑖 + 𝑋𝑖𝜁+ε𝑖 

where  

𝑠ℎ𝑜𝑐𝑘𝑖 = 𝑠𝑢𝑟𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖  − 𝐹𝐸𝑀𝐴 𝑓𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 

 

for 𝑖 = 1, … , 𝑁, non-flooded properties, and where  𝑋𝑖 are control variables and ε𝑖 is the error 

term. ∆𝑙𝑛𝑃𝑖 is the price change given that the first sale is before the storm and the second sale is 

after the storm, i.e., where repeat sales straddle the storm. 

 

Consider two identical houses, A and B, where each is 100 feet from the closest FEMA 

floodplain boundary. For house A, perhaps the flood approached within 150 feet, for a 𝑠ℎ𝑜𝑐𝑘 =
150 − 100 = 50 (so that any value above 0 is “good news” or a positive shock). For house B, 

suppose the flood came to within 50 feet of the house, for a 𝑠ℎ𝑜𝑐𝑘 = 50 − 100 = −50; thus a 

negative shock. In this case, we expect house B to lose value, relative to house A. This would 

suggest  𝜃 > 0, where 𝜃 is the effect of a one-foot shock on the housing price change.  

 

To estimate 𝜃, we employ several different empirical strategies. First, we use hedonic regressions 

to estimate the impacts on the dry and wet sides. But, because of the data set size, we can use 

repeat sales that allow us to “net out” the static unobservable characteristics that might otherwise 

be omitted. We use a technique similar to Ries and Somerville (2010), where we develop a price 

index to estimate price-effects that are independent of the storm. We also include a measure of 

2010 census tract building occupancy rate changes to control for supply effects (both because of, 

and independent of, the storm). We are able to measure changes in the occupancies rates before 

and after the storm using vacancy data provided by the Department of Housing and Urban 

Development (HUD), and thus our estimation is able to measure the demand effect—how much 

of prices changes were due to informational shocks, rather than changes in the real estate stock. 

 

A key issue is not just whether 𝜃 > 0, but whether the magnitude of 𝜃 varies across the city. Are 

their spatial differences in how responsive some properties are to the size (and sign) of the 

shock? If so, this would suggest OLS is not fully capturing spatial variation in the shocks. For 

this reason we employ LWRs (described below), which gives an estimate, 𝜃𝑖, for each property. 

Given the complexity of many cities, their heterogeneous demographics, and diverse real estate 

stock, there is no reason to believe, a priori, that the effects of a storm on the dry side is 

homogenous; rather prices in different neighborhoods are likely to respond differently based on 

the perceived risk and the characteristics of property owners.   

 

3.1 Methodology 

Each period, properties owners have information about the likelihood of flooding affecting their 

property, i. Denote, 
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𝐹𝑖𝑡 = 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖𝑡,  

for each period t. If t is before October 29, 2012, then 

𝐹𝑖𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐹𝐸𝑀𝐴 𝑓𝑙𝑜𝑜𝑑𝑝𝑙𝑎𝑖𝑛 𝑚𝑎𝑝𝑖𝑡 

If t is after the storm (denote this then t+j),  

𝐹𝑖𝑡+𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑆𝑎𝑛𝑑𝑦 𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖𝑡+𝑗 

To estimate the informational shock from the storm, we examine properties that sold once before 

Sandy (in time t), and once again after Sandy (in time t+j). In order to estimate this model, we 

first begin with the linear hedonic model: 

                         𝑙𝑛𝑃𝑛𝑖𝑡 = 𝜃𝐹𝑛𝑖𝑡 + 𝑋ζ + 𝜀𝑛𝑖𝑡,                                     (1) 

where 

𝜀𝑛𝑖𝑡 = 𝛼𝑛𝑡 + 𝜈𝑛𝑖𝑡,       𝜈𝑛𝑖𝑡 ~ 𝑖𝑖𝑑(0, 𝜎2) 

𝛼𝑛𝑡 is a price level (index) in NYC borough n at time t. Fnit is the flooding likelihood measure at 

time t, with parameter X (with parameter vector, 𝜁) is a matrix of observations for physical 

characteristics of the property (which are assumed to be time-invariant). 

Now consider Equation (1), but for period t+j, where t+j is after the occurrence of Hurricane 

Sandy: 

                                              𝑙𝑛𝑃𝑛𝑖𝑡+𝑗 = 𝜃𝐹𝑛𝑖𝑡+𝑗 + 𝑋ζ + 𝜀𝑛𝑖𝑡+𝑗 .                              (2)  

Subtracting (1) from (2) yields: 

                       𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) = 𝜃(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝜀𝑛𝑖𝑡+𝑗 − 𝜀𝑛𝑖𝑡 .                            (3)  

Using the fact that 𝜀𝑛𝑖𝑡 = 𝛼𝑛𝑡 + 𝜈𝑛𝑖𝑡 , we can rewrite (3) as: 

          𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) − (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡) = 𝜃(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝜈𝑛𝑖𝑡+𝑗 − 𝜈𝑛𝑖𝑡.          (3’) 

Our objective is to estimate (3’) in order to obtain 𝜃, the effect flood shocks on sale prices. There 

are a number of possible estimation approaches to generating this estimate of 𝜃, including OLS 

and LWRs, assuming it is possible to obtain estimates of (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡) in a manner that avoids 

potential endogeneity due to correlation between neighborhood-level shocks and F (discussed 

more below).  

Furthermore, the OLS model assumes 𝜃 is constant. But, given the heterogeneity of many major 

cities (such as NYC), both demographically and geographically, there is no reason to believe that 

𝜃 is constant across the city (and this is confirmed in our Hurricane Sandy results below).  

An extension of this model assumes a non-constant relationship between the explanatory 

variables in (1) and the dependent variable. Specifically, consider the following equation: 

                                  𝑙𝑛𝑃𝑛𝑖𝑡 = 𝜃𝑖𝐹𝑛𝑖𝑡 + 𝑋ζ + 𝜀𝑛𝑖𝑡 ,                     (4) 
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When each property has its own coefficient, 𝜃𝑖, the model is similar to equation (3’): 

           𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) − (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡) = 𝜃𝑖(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝜈𝑛𝑖𝑡+𝑗 − 𝜈𝑛𝑖𝑡          (4’) 

To determine the heterogeneous marginal effects of shocks on prices, we estimate a 

nonparametric variation of (4’) using LWRs. This leads to the following weighted least squares 

regression equation:  

𝑤𝑖𝑘 × [𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) − (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡)] = 𝑤𝑖𝑘𝜃𝑖(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝑤𝑖𝑘(𝜈𝑛𝑖𝑡+𝑗 − 𝜈𝑛𝑖𝑡)    (5) 

where 𝑤𝑖𝑘 = 𝑒−(𝑑𝑖𝑘/𝑏)2
. This method generates a separate parameter estimate, 𝜃𝑖, for each repeat 

sales observation i, b is the bandwidth parameter, and 𝑑𝑖𝑘 is the distance between two properties.  

 

One can explore, in the context of our specific application, various issues such as: does the 

marginal effect of informational shock vary across the city? Is it higher in say Manhattan than in 

other boroughs? Does it change for different types of buildings? But to estimate (3’) (and (5)), 

we need an estimate of (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡). Note, again, that (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡) is the change in repeat 

sales price index for borough n between two periods, t and t+j.  

3.1.1 Estimating Price Indexes 

To estimate (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡), there are several possible approaches. One is a repeat sales estimator, 

as in Baily, Muth, and Nourse (1973). A more recent version of the repeat sales estimator is 

presented in Anenberg and Laufer (forthcoming), or the Fourier price index approach of 

McMillen (2003) and McMillen and Dombrow (2001). The former estimates the Fourier price 

index nonparametrically, and the latter uses a parametric Fourier price index approach. A third is 

a more recently developed approach of a “matching” estimator, as in Deng, et al. (2012). For 

ease of implementation, we focus on a parametric Fourier price index approach to obtaining the 

estimates for (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡).   

One potential concern is that neighborhood-level shocks in estimating  could be correlated with 

Fni,t , thus biasing 𝜃. Here one should use the sample of repeat sales for which both property 

sales occur either before or after the flood date. Then, a different sample—the sample of repeat 

sales with dates that straddle the flood date—should be used in estimating Equation (5).  

 

Specifically, we construct a parametric Fourier repeat sales price index using properties with 

repeat sales that were either both before or both after the flood date. Then we use these repeat 

sales price indexes for each borough of the city to adjust the property-level price ratio. In 

Appendix A.2 we explain this in more detail. 

 

After estimating the Fourier price indexes and obtaining the fitted values of (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡) with 

the estimates in (7), one substitutes these estimates for (𝛼𝑛𝑡+𝑗 − 𝛼𝑛𝑡) into (5) and then regress 

the independent effects of the changes in sale prices on shock value as follows: 
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𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) − (�̂�𝑛𝑡+𝑗 − �̂�𝑛𝑡) = 𝜃𝑖(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝜈𝑛𝑖𝑡+𝑗 − 𝜈𝑛𝑖𝑡         (4’) 

 

3.1.2 Selection Bias 

Since we use repeat sales, it might be the case that there is something unrepresentative about the 

structures for which there are repeat sales. For this reason, we first estimate an inverse mills ratio 

(IMR) value (Heckman, 1976, 1979) to include in the repeat sales LWRs. Specifically, using all 

sales, we first estimate the following probit model, where I=0 if a sale is not a repeat, and I=1 if 

a sale is one of a set of repeat sales (i.e. the second or greater sale, if observed)):  

𝑃𝑟𝑜𝑏(𝐼 = 1)  = Φ(𝛾0 + 𝑋𝛽 + 𝜐)  

where Φ(•) is the cumulative normal density function; X is the matrix of observations for the 

characteristics typically used in the hedonic regression; and 𝛾0 is a constant. The IMR is given 

by: 

𝐼𝑀𝑅 =
ϕ(𝛾0 + 𝑋𝛽)

Φ(𝛾0 + 𝑋𝛽)
, 

where ϕ(•) is the standard normal density. 

Next, one would return to our sample of repeat sales pairs. If IMRt is the IMR evaluated at the X 

value for sale #1, and IMRt t+j is evaluated at the X value for sale #2, one would include the 

difference (IMRt+ji – IMRti), for each observation i, as an explanatory variable in the straddle 

LWR regression as follows: 

𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) − (�̂�𝑛𝑡+𝑗 − �̂�𝑛𝑡) = 𝜃𝑖(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝜔(𝐼𝑀𝑅𝑡+𝑗,𝑖 − 𝐼𝑀𝑅𝑡𝑖) + (𝜈𝑛𝑖𝑡+𝑗 − 𝜈𝑛𝑖𝑡)          

The probits include a wide variety of property and neighborhood characteristics that are likely to 

influence the probability of repeat sales (see Appendix A for regression results). Note that the χ2-

statistic for the regressions in our Sandy application (for homes, apartments and commercial 

properties) all have p-values less than 0.01.6  

3.1.3. Controlling for Supply 

Lastly, one other issue of concern is what we call the supply effect. If dry structures are close to 

flooded structures, then the reduction in supply may cause our estimates of 𝜃𝑖 to be biased if 

there is a correlation between the change in F and changes in housing stock. For this reason, we 

                                                            
6 The OLS regressions for the equations for the repeat sales, as well as the LWR coefficients, show that, on 

average, 𝜔 ≠ 0, suggesting we should be concerned about selection bias (see Table 7 and Appendix A). 
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include the change in occupancy rates of homes in the census tracts of each of the properties 

(HUD, 2016).  

Using LWRs we estimate the following model: 

𝑙𝑛 (
𝑃𝑛𝑖𝑡+𝑗

𝑃𝑛𝑖𝑡
) − (�̂�𝑛𝑡+𝑗 − �̂�𝑛𝑡) = 𝜃𝑖(𝐹𝑛𝑖𝑡+𝑗 − 𝐹𝑛𝑖𝑡) + 𝜔(𝐼𝑀𝑅𝑡+𝑗,𝑖 − 𝐼𝑀𝑅𝑡𝑖) + 𝛽(𝑂𝑡+𝑗,𝑛 − 𝑂𝑡𝑛) +

(𝜈𝑛𝑖𝑡+𝑗 − 𝜈𝑛𝑖𝑡),                                                                          (6) 

where (𝑂𝑡+𝑗,𝑛 − 𝑂𝑡𝑛) is the change in occupancy rates in a neighborhood before and after the 

flood. 

4. Hurricane Sandy Application: The Data 

 

Here we provide some basic information about the data; Appendix A gives more details. We 

began by collecting data on nearly all bona fide open market sales of buildings in NYC between 

January 2003 and October 2014 (the data set omits sales of condo or coop units). Hurricane 

Sandy occurred on October 29, 2012, and thus we have about two years of data after the storm to 

assess the short and medium run effects.  

 

In this application of our technique to Sandy, we investigate three types of properties: one and 

two family homes, apartment buildings, and commercial properties, in order to compare and 

contrast the effects of these property classes on real estate prices. This data set comes from the 

NYC Department of Finance and provides information on the type of property, lot and building 

square footage, its age, and address. The sales data were then merged with the NYC’s Primary 

Land Use Tax Lot Output (PLUTO) files, which contain additional information about the 

structures, such as the number of floors, the census tract, and latitude and longitude coordinates. 

To estimate location-based effects, we also calculated the distance in miles (as the crow flies) of 

each property to the Empire State Building, which is our measure of the city center (as in Barr 

and Cohen, 2015). 

 

Next, we utilized GIS shape files related to the storm surge of Hurricane Sandy (see Figures 2-4). 

These files have been generously provided by the Natural Resources Defense Council (NRDC). 

The map indicates the location of the storm surge and the location of the FEMA floodplain. Thus 

the maps show four areas: the area of FEMA floodplain that remained dry, the area in the FEMA 

floodplain that was hit by the storm surge, the area of the surge that was outside of the FEMA 

floodplain, and the area that was neither in the floodplain nor the storm surge. Thus, we 

categorize each property based on it being in one of those four areas. 

 

For each property, we also calculated the closest distance to the floodplain boundary, the closest 

distance to the shore, and closest distance to the surge boundary. We also have been able to 

obtain other data sets that are helpful in estimating the effect of the storm on property values, 

including the elevation of each property relative to mean sea level and the depth of the storm 

surge beneath each flooded property (see Appendix A for more information).  
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Finally, we also merged the HUD’s quarterly vacancy data from the 4th quarter of 2005 to the 

last quarter of 2014 (HUD, 2016). This data set provides information on the occupancy rate of 

structures, yielding estimates for the number of structures in each census tract. Thus the 

occupancy rate of structures (of all kinds) is our measure of the supply of building space.  

 

A table of the descriptive statistics is in Appendix A. Our data set includes an initial sample of 

over 371,000 sales. Of those, 13% are from after the Hurricane. About 5,123 properties in our 

sample experienced flooding from the storm. For these houses, we estimate the mean flood 

height was 3.24 feet, and with a maximum surge of 13.3 feet. On average, throughout the city, 

the flood extended about 0.035 miles inland; its maximum extent was 0.9 miles inland. Across 

the city, the average elevation is 16.3 feet, and the average distance to the closest shoreline is 

1.25 miles. 

 

The average sales price for all properties in the data set, unadjusted for inflation, is $240 per 

square foot, and adjusted to October 2014 prices, it is $273 per square foot (where real prices are 

used based on the NYC CPI, excluding shelter). The average lot size is 3840 square feet and the 

average building area is about 6704 square feet. 74% of the sales in the sample are for one or two 

family houses, 8% are apartment buildings. 4% of the sales are for commercial properties. 

 

5. Assessing the Damage: A Hedonics Approach 

 

Figure 1 shows two indexes of real estate prices throughout NYC from 2003 and 2014—those 

properties that remain dry and those that were to be or were flooded by Hurricane Sandy on 

October 29, 2012. The indexes come from two hedonic regressions of the log of the real price of 

building space per square foot (sales prices divided by the NYC CPI excluding shelter costs) and 

a series of building and locational controls (further discussed in this section and in Appendix A). 

The results show, as expected, that the two series moved in tandem until the storm; at that point 

we observe a sharp reduction the prices in the flooded properties. Subsequently, the flooded 

areas experienced a rebound, though have remained below the non-flooded properties.7 

 

{FIGURE_1_here} 

 

Tables 1-3 present the results of hedonic regressions aimed at assessing how the storm affected 

real estate prices. Table 1 is for one or two family homes; Table 2 is for apartment buildings, and 

Table 3 is for commercial properties. All regressions contain a series of building-level controls 

(square footage of property, year built, square footage of lot, # of structures on the property, and 

total units, as well as year-quarterly dummies, building type dummies and zip code dummies). 

The tables present only the variables that, presumably, are storm-related. The standard errors are 

clustered at the zip code level. Each table provides five specifications. In all tables, Equations 

(1)-(2) include all the properties in the respective category from January 2003 to October 2014. 

Equations (3)-(5) include only properties that are either in the flooded area or within a half-mile 

away, and for sales within two years of the storm (i.e., November 2010 to October 2014). 

                                                            
7 It is possible that after the storm, certain types of properties in the flooded areas are more likely to appear on the 

market than others (e.g., those less damaged by the storm). But an Inverse Mills Ratio (IMR) adjustment suggests 

that sample selection is not a key problem. Details are available upon request. 
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{TABLES_1_through_3_here} 

 

The explanatory variables are: 

1. Distance of property to shoreline (miles), interacted with before and after the storm 

dummies, respectively;  

2. Whether the property was in the FEMA floodplain, interacted with before and after the 

storm dummies, respectively; 

3. The elevation of property (in feet), interacted with before and after the storm dummies, 

respectively; 

4. Dummy variable if property is flooded by storm surge, times a post-storm dummy; 

5. Height of storm surge (0 for dry properties), interacted with a post-storm dummy; 

6. Distance of dry properties from the storm surge, interacted with post-storm dummy and  

dry-property dummy; and 

7. Quarterly occupancy rate of structures in respective census tracts (2005Q4-2014Q4). 

 

Table 1 shows results for one and two family houses. Based on results from column (1), 

residential properties, on average, lost 12.7% of their value in the flooded zone. Columns (2)–(5) 

show a strong negative relationship between the height of the surge and the price after the storm. 

The results show that, on average, a one-foot increase in the storm surge is associated with 3.1%-

3.7% drop in housing prices. The results also suggest higher elevation became more valuable 

after the storm. In column (5), we do not see evidence that, on average, dry properties close to 

the storm experienced any price impacts, but we explore this issue in more detail below. 

 

The value of being in a FEMA floodplain district is unclear, given that the signs change across 

specifications. However, after the storm, all coefficients for the FEMA floodplain dummy are 

negative (though statistically insignificant), suggesting that being in the FEMA floodplains is an 

informational disamenity, given that it likely reveals new information about the likelihood of 

future storm flooding.  

 

Table 2 contains the same regression specifications but for apartment buildings. Here we 

observe, with the results in column (1), apartment buildings lost about 16.7% of their value, on 

average, if they were in the flooded area. In columns (2) to (5), we see that a one-foot increase in 

the surge reduced prices between 6.0%-10.5%, on average. We also see evidence that the value 

of being in the FEMA floodplain became more negative after the storm. There is also evidence 

of an elevation premium after the storm—that is, the elevation coefficients increase in value after 

Sandy, suggesting that apartment buildings on higher ground become relatively more valuable. 

 

Finally, Table 3, shows commercial properties results. On average, inundated commercial 

properties lost about 9.7% of their value (though it’s statistically insignificant). For flooded 

properties, each foot of surge height is associated with 8.2%-12.3% loss in value. Being in a 

FEMA floodplain after the storm yields significant losses for commercial properties, as those 

properties experience dramatic price drops. Interestingly, these properties do not exhibit an 

elevation premium. 

 



13 
 
 

In summary, across property types, there is strong evidence that the storm surge created 

significant losses in property values, as would be expected. Those properties with greater 

flooding lost more value, likely due to the greater damage caused by the storm. For apartment 

buildings, we see a strong elevation premium after the storm. Finally, across regressions, being 

in the FEMA floodplain after the storm caused properties to lose value. This suggests that the 

informational shock about the likelihood of being flooded is larger than the value placed on 

having flood insurance. 

 

5.1 Dry Property Effects 

 

In this section, using OLS regressions, we investigate how the storm surge might have influenced 

properties only on the dry side after the storm; that is, properties that flooded. Tables 4 through 6 

present regression results.  

 

Regarding the FEMA floodplain coefficients, for one and two family homes, there is not much 

evidence of an effect.  For apartment buildings, the FEMA coefficients are all negative and there 

is some evidence that, after the storm, the coefficients become less negative, though, again, they 

are not statistically significant. For commercial properties, the effect becomes more negative 

after the storm, suggesting that commercial property buyers consider being close the FEMA 

boundary as bad news for their properties.  For homes and apartments (but not commercial 

buildings), there is an elevation premium.   

 

{Tables_4_thru_6_here} 

 

The coefficient for the distance to the surge boundary is positive (but not significant) across all 

three dependent variables. This provides weak evidence that those properties further away from 

the flood zone rose in value, on average, as would be expected if there was an informational 

shock from the storm. 

 

However, to explore this further, we also interact the borough dummies with the distance from 

the surge to see if there are heterogeneous effects across the city. Across dependent variables, for 

Brooklyn and Manhattan there are positive effects from being further away from the surge after 

the storm. However, there are negative effects for Bronx and Staten Island, which is contrary to 

what one might expect.  

 

Importantly, in columns (4) and (5), across tables, there is a positive effect related to the distance 

to surge minus the distance to FEMA zone. This suggests that the informational shock generated 

changes in prices for these properties, on average. We explore this finding in more detail below 

to see if there is heterogeneity in the response to shocks across the city.  

 

In summary, the key findings of these regressions are that the distance to the surge boundary, 

after the storm, for each of the five boroughs, shows positive effects in some cases and negative 

in others. We would expect positive in all cases—being further away would be better. Finally, 

we find a positive coefficient estimates for Sandy Distance-FEMA Distance, as would be 
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expected.  We now turn to the investigating the effects of the storm using LWRs, which allows 

us to explore in more detail the heterogeneous effects of the storm surge on the dry properties.  

 

 

6. Repeat Sales and LWRs for Dry Properties: Results for NYC 
 

Here we report the results of the LWRs for the repeat sales. When measuring the effects of 

Sandy on the dry properties, it is also important to control for other factors that might be 

correlated with the shock effect. Because the shock is likely to vary across the city (from north to 

south and east to west), latitude and longitude are useful proxies for this spatial variation. Thus, 

we included, as spatial controls, the latitude and longitude (in degrees) of each property. 

Furthermore, since our data set includes properties with sales either before, during or after the 

financial crises and Great Recession, it is also important to include time-related controls, so, 

again, we could better isolate the cause of the shock. To this end, we include two time-related 

variables: the number of calendar days between the two repeat sales and the year and quarter of 

the second sale. 

Descriptive statistics of the LWR coefficients are given in Table 7. OLS regression results the 

repeat sales equation for one and two family homes, apartment buildings and commercial 

structures, respectively, as well as LWR coefficient estimate histograms, are in Appendix B. 

Table 7 shows that, on average, the LWR coefficients for the surge boundary distance minus the 

FEMA boundary distance (Surge – FEMA) variable are positive, as would be expected. That is, a 

“positive” shock—when the storm did not come as close as the FEMA line—would mean a 

relative benefit for those property owners.  

The average of the standard deviations of the coefficients are greater than the mean values of the 

coefficients, suggesting a relatively large degree of variation for the coefficient estimates. The 

ranges of the coefficients show this as well. Furthermore, a test for the non-stationarity of the 

coefficients shows that for each of the three dependent variables, we can reject stationarity at 

greater than the 99% level of confidence.  

In sum, the evidence strongly rejects that OLS estimates accurately measure the relationship 

between the storm shock and price changes; rather the LWR estimates are better able to measure 

the degree of spatial heterogeneity across the city.  

{Table_7_here} 

Figures 2 through 4 present maps of the t-statistics of the coefficients (i.e., the LWR coefficient 

estimates divided by their respective standard errors). There are a few general conclusions to be 

drawn from these maps. First, there is, again, a substantial degree of variation in the coefficient 

estimates and their significance levels. For homes, the largest positive t-statistics are mostly 

found in Brooklyn and Queens. Staten Island, northeastern Queens, and the western Bronx for 

the most part, have insignificant coefficient estimates. For apartments, the largest t-statistics 

appear in Brooklyn and Queens, with some positive coefficients along the central spine of the 

Bronx. For commercial properties, there are large effects in downtown Manhattan and also 

across Brooklyn.  
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{Figures_2_through_4_here} 

 

A key finding is that, while the OLS coefficient generates an average coefficient for the shock 

variable, there are large swaths of the city where prices are unaffected by the surge simultaneous 

with areas of the city that are affected. In particular, the areas of the city that appear to have the 

greatest impact are the older residential neighborhoods in Brooklyn. In the next section, we test 

some hypotheses about what might be driving the variation in the LWR coefficient estimates 

across the city.  

Also, as the t-statistics demonstrate across the figures, while there are negative coefficient 

estimates, the vast majority of them are statistically insignificant. This again suggests there is no 

“shock effect” across much of the city and a concentrated shock effect in other parts. Also see 

Appendix B for histograms of the LWR coefficient estimates. 

7. Explaining Heterogeneous Effects 

The variation in the LWR coefficients leads to the question of what might account for this 

variation across the city and across property types. That is, why would some properties exhibit 

greater volatility than others? 

The maps of the t-statistics suggest several possible factors. In particular, in all three property 

classes, Brooklyn has large pockets of positive and significant coefficients. More broadly, the 

maps suggest that properties close to the center of the city (here designated as the Empire State 

Building) have larger values as well.  

These areas have undergone a significant degree of gentrification in the last decade or so 

(Meltzer and Ghorbani, 2017). This might lead one to consider a theory that gentrification is 

driving the responses to the shocks. Areas with significant new investments will have more to 

lose (or gain) with future shocks, and, as a result, they will exhibit greater volatility. 

This theory would suggest a few testable hypotheses: the closer the property to the center city, 

the greater the coefficient estimate; properties in denser areas, with better public transportation, 

would have larger coefficients estimates. 

To test this hypotheses, we created a data set where the LWR coefficient estimates are the 

dependent variables and with several control variables, including 2010 Census data at the tract 

level (see Appendix C.). The data include the three spatial variables: the distance of the property 

to the Empire State Building (i.e. distance to city center as the crow flies in miles), the lot’s 

elevation (in feet), and the building’s latitude and longitude coordinates (in degrees).  

For demographic variables, we include the census tract’s median income, and the percent of 

residents who are white, black and Hispanic, respectively (all other racial/ethnic groups are the 

omitted category). As measures of neighborhood density, we include the census tract population 

and the average floor area ratio of each building in the tracts. As a measure of transportation 

access, we included the number of subway stops within a half mile of each property. Finally, we 

also included borough dummy variables. The standard errors are clustered by the census tract.  
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We ran three regressions for each of the three properties. The first equation includes only spatial 

characteristics and borough dummies. The second regression includes income and population 

counts. The third equation includes all the variables listed in the previous paragraph. 

First, for all property types, the distance to the center of the city is negatively correlated with the 

LWR coefficient estimates, suggesting that, all else equal, those (higher valued) properties near 

the center city are more responsive to shocks. For all properties, transportation access is 

positively related to the shock coefficients. For the one and two family homes and commercial 

properties, we find that higher income neighborhoods positively correlated with the LWR 

coefficient estimates. We do not find strong support for our density measures or the racial/ethnic 

categories.  

Taken together, the data support that more centralized locations have higher coefficients, all else 

equal. However, we leave for future work a more detailed treatment of the causes for the 

variation in shock effects. 

{Table_8_here} 

To confirm our estimates are measuring the effect of Sandy on real estate values, and do not 

emerge from some other source, we perform some LWR statistical robustness tests. Table 9 

presents p-values for these tests. 

The “straddle” column contains the results of the tests for three data sets with repeat sales pairs 

that straddle the storm, while the “both after” column is for repeat sales where both sales occur 

after the storm. Since there is no Sandy shock during this time, we expect to find in these cases 

that we cannot reject the respective null hypothesis of no effect from the Surge-FEMA variable. 

The first series of tests relates to ordinary least squares where we look at price changes as a 

function of the “shock variable” and other controls as discussed above. For homes and 

apartments, there are significant results for the straddle sales, but insignificant effects for the 

post-Sandy sales. For commercial properties, there is an insignificant effect for both the straddle 

properties and the two post-Sandy sales (though we do see a rise in the p-value for the “both 

after” sales). 

Next, we test whether LWRs are able to capture the variation in the data better than OLS, using 

the bandwidth test, which is a test if the LWR regressions perform better than OLS in fitting the 

data (and essentially tests if at least one right hand side variable should be estimated via LWR). 

In all cases but one, the answer is “yes.” This result suggests that at least one right hand side 

variable in the specification improves the model fit. However, this leads to the next test of 

whether the LWRs perform better for our variable of interest—Sandy distance-FEMA distance.  

In this case, we perform tests of spatial nonstationarity of the Sandy-FEMA coefficients. Here the 

null hypothesis is that there is no variation in the coefficients and hence LWRs would not be 

necessary for that particular variable. We find that we can reject the null in the straddle cases, but 

we cannot reject it in the “both after” cases. This finding suggests that there is spatial stationarity 

in the “both after” case and that the spatial stationary coefficient is statistically insignificant. In 

short, the spatial stationarity test combined with the OLS test suggests that our straddle data is 

capturing a true Sandy effect. 
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{Table_9_here} 

8.  Conclusion 

 

In this paper we develop a methodology to estimate the effects that a major hurricane has on 

properties that are not flooded by the storm. Our approach examines how price changes are 

affected by the distance to the actual flood zone relative to the distance of the FEMA floodplain. 

Before the storm, the floodplain maps serve to provide information on the likelihood a flood.  

The FEMA floodplain maps typically differ from actual storm surges. After the storm, the 

distance to the inundation zone provides new information about future flooding risks from storm 

surges, which may detrimentally impact property values. Moreover, these shifts in flood risks 

can be different across locations within a city, because at some locations these “shocks” may be 

substantial while at other locations they may be negligible. 

 

Our methodology uses LWRs to allow for the possibility that the effects of the surge are 

heterogonous across a city. Our approach controls for both supply (i.e., building occupancy) and 

demand effects, as well as sample selection issues with an inverse Mills ratio adjustment. We 

propose using a smooth local price index, which controls for neighborhood price variation 

independent of the intendent variable of interest.  

 

We demonstrate our methodology with a dataset of NYC commercial and residential repeat sales 

properties that sell once before and once after Hurricane Sandy. Neighborhoods in outer parts of 

NYC experience no changes in prices due to the storm. But we see large and statically significant 

effects in the inner parts of the city, in particular parts of Brooklyn and Queens near Manhattan, 

which suggest gentrifying neighborhoods have the largest coefficients. We illustrate these 

heterogeneous effects with several maps, and these maps demonstrate substantial variation in the 

effects across NYC.  

 

Our approach has the potential to address the flood risk impacts of other recent, major storms, 

such as Hurricanes Harvey and Irma. Given the prevalence of several major, devastating 

hurricanes in the past few years in the U.S., our approach has the potential to aid policy makers 

in estimating damages from devastating storms, and can provide information on potential 

benefits that could have been realized if preventative storm surge mitigation had been 

undertaken. We also anticipate our empirical model may be calibrated to various cities across the 

U.S. for forecasting the property value impacts of an array of potential future “shock” effects 

from unexpected hurricanes or floods. 
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Figures and Tables 

Figures 

 

Figure 1: Real Price Index for NYC Real Estate (of all building types), Jan. 2003- Oct. 2014. Vertical Line is 

date of Hurricane Sandy. See the Appendix A for sources and preparation. 
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Figure 2: t-statistics for LWR coefficients for one and two family homes. See the Appendix A for data 

sources.  
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Figure 3: t-statistics for LWR coefficients for apartment buildings. See the Appendix A for data sources. 
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Figure 4: t-statistics for LWR coefficients for commercial properties. See the Appendix A for data sources. 
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Tables 

Table 1: OLS Regressions for one and two family homes. Dependent Var.: Ln(Real Price per Sq. Foot) 

  (1) (2) (3) (4) (5) 

Dist. to Shore x Pre-Sandy Dummy 0.028 0.028 0.068 0.069 0.068 
 (1.56) (1.56) (2.14)* (2.08)* (2.02)* 

Dist. to Shore x Post-Sandy Dummy 0.014 0.013 0.076 0.079 0.076 
 (0.62) (0.60) (2.40)* (2.16)* (2.06)* 

FEMA Zone Dummy x Pre-Sandy Dummy 0.052 0.052 -0.004 -0.004 -0.004 
 (1.77) (1.78) (0.04) (0.04) (0.04) 

FEMA Zone Dummy x Post-Sandy Dummy -0.034 -0.035 -0.012 -0.012 -0.022 
 (0.70) (0.72) (0.25) (0.24) (0.41) 

Elevation (feet) x Pre-Sandy Dummy 0.0027 0.0027 0.0022 0.0022 0.0021 
 (3.30)** (3.29)** (2.56)* (2.54)* (2.35)* 

Elevation (feet) x Post-Sandy Dummy 0.0038 0.0038 0.0024 0.0026 0.0024 
 (3.29)** (3.27)** (2.76)** (2.78)** (2.63)** 

Inundated Dummy x Post-Sandy Dummy -0.127 -0.007 -0.036 -0.038 -0.035 
 (4.40)** (0.17) (1.02) (1.06) (1.12) 

Surge height (feet) x Post-Sandy Dummy  -0.037 -0.032 -0.031 -0.033 
  (2.84)** (2.19)* (2.19)* (2.39)* 

Dist. to Surge (miles) x Dry Property Dummy x Post-

Sandy Dummy 
   -0.013 -0.013 

    (0.37) (0.37) 

Neighborhood Occupancy Rate     0.116 

          (1.83) 

R2 0.24 0.24 0.27 0.27 0.27 

# obs. 274,263 274,263 50,709 50,709 48,875 

Note: Prices are deflated by NYC CPI, excluding shelter. Only storm-related variables shown; full regressions 

include housing and neighborhood controls (see Appendix A). Standard errors were clustered by zip codes. t-

statistics are given below coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  

 

 

 

 

 

 

 

 

 

 



26 
 
 

Table 2: OLS regressions for apartment buildings. Dependent Var.: Ln(Real Price per Sq. Foot) 

  (1) (2) (3) (4) (5) 

Dist. to Shore x Pre-Sandy Dummy 0.02 0.02 0.086 0.084 0.085 
 (0.72) (0.72) (1.03) (1.01) (0.99) 

Dist. to Shore x Post-Sandy Dummy -0.05 -0.05 -0.119 -0.178 -0.178 
 (1.49) (1.51) (1.66) (1.83) (1.79) 

FEMA Zone Dummy x Pre-Sandy Dummy -0.055 -0.052 -0.104 -0.107 -0.107 
 (0.50) (0.47) (0.36) (0.37) (0.37) 

FEMA Zone Dummy x Post-Sandy Dummy -0.08 -0.078 -0.183 -0.169 -0.169 
 (0.42) (0.41) (1.05) (0.98) (0.97) 

Elevation (feet) x Pre-Sandy Dummy 0.001 0.001 0.000 0.000 0.000 
 (0.75) (0.75) (0.04) (0.02) (0.07) 

Elevation (feet) x Post-Sandy Dummy 0.004 0.004 0.004 0.003 0.003 
 (2.15)* (2.14)* (1.68) (1.37) (1.30) 

Inundated Dummy x Post-Sandy Dummy -0.167 0.189 0.082 0.102 0.118 
 (1.23) (1.57) (0.76) (0.94) (1.06) 

Surge height (feet) x Post-Sandy Dummy  -0.105 -0.059 -0.06 -0.066 
  (2.41)* (2.00)* (2.03)* (2.09)* 

Dist. to Surge (miles) x Dry Property Dummy x Post-

Sandy Dummy 
   0.114 0.12 

    (1.05) (1.10) 

Neighborhood Occupancy Rate     -0.011 

          (0.07) 

R2 0.29 0.29 0.37 0.37 0.37 

# obs. 29,277 29,277 7,005 7,005 6,909 

Note: Prices are deflated by NYC CPI, excluding shelter. Only storm-related variables shown; full regressions 

include housing and neighborhood controls (see Appendix A). Standard errors were clustered by zip codes. t-

statistics are given below coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  
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Table 3: OLS regressions for commercial properties. Dependent Var.: Ln(Real Price per Sq. Foot) 

  (1) (2) (3) (4) (5) 

Dist. to Shore x Pre-Sandy Dummy 0.092 0.093 0.012 0.011 0.011 
 (2.78)** (2.80)** (0.15) (0.13) (0.13) 

Dist. to Shore x Post-Sandy Dummy 0.04 0.038 0.062 0.054 0.059 
 (0.99) (0.96) (0.98) (0.68) (0.73) 

FEMA Zone Dummy x Pre-Sandy Dummy -0.038 -0.036 0.027 0.027 0.03 
 (0.27) (0.26) (0.15) (0.15) (0.16) 

FEMA Zone Dummy x Post-Sandy Dummy -0.271 -0.274 -0.237 -0.236 -0.238 
 (1.31) (1.32) (1.19) (1.19) (1.23) 

Elevation (feet) x Pre-Sandy Dummy 0.001 0.001 -0.003 -0.003 -0.003 
 (0.72) (0.73) (0.66) (0.65) (0.74) 

Elevation (feet) x Post-Sandy Dummy 0.001 0.001 -0.003 -0.003 -0.003 
 (0.44) (0.33) (0.92) (0.90) (0.84) 

Inundated Dummy x Post-Sandy Dummy -0.097 0.237 0.148 0.15 0.178 
 (1.06) (1.43) (0.91) (0.91) (1.09) 

Surge height (feet) x Post-Sandy Dummy  -0.123 -0.082 -0.082 -0.086 
  (2.81)** (1.73) (1.73) (1.86) 

Dist. to Surge (miles) x Dry Property Dummy x Post-

Sandy Dummy 
   0.021 0.006 

    (0.14) (0.04) 

Neighborhood Occupancy Rate     -0.152 

          (0.65) 

R2 0.31 0.31 0.28 0.28 0.28 

# obs. 15,923 15,923 4,008 4,008 3,947 

Note: Prices are deflated by NYC CPI, excluding shelter. Only storm-related variables shown; full regressions 

include housing and neighborhood controls (see Appendix A). Standard errors were clustered by zip codes. t-

statistics are given below coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  
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Table 4: OLS regressions for homes not flooded. Dependent Var.: Ln(Real Price per Sq. Foot) 

  (1) (2) (3) (4) (5) 

Dist. To Shore  (miles) x Pre-Sandy Dummy 0.022 0.024 0.059 0.013 0.011 

 (1.25) (1.37) (1.79) (0.57) (0.47) 

Dist. To Shore  (miles) x Post-Sandy Dummy 0.00 -0.016 0.065 0.019 0.016 

 (0.01) (0.59) (1.77) (0.69) (0.58) 

Dist. To FEMA Boundary  (miles) x Pre-Sandy Dummy 0.039 0.035 -0.017 -0.019 -0.021 

 (1.38) (1.22) (0.18) (0.21) (0.22) 

Dist. To FEMA Boundary  (miles) x Post-Sandy Dummy -0.042 -0.023 -0.001 -0.044 -0.056 

 (0.89) (0.48) (0.02) (0.94) (1.09) 

Elevation (feet) x Pre-Sandy Dummy 0.003 0.003 0.002 0.003 0.003 

 (3.33)** (3.16)** (2.51)* (3.58)** (3.37)** 

Elevation (feet) x Post-Sandy Dummy 0.004 0.006 0.004 0.004 0.003 

 (3.23)** (4.74)** (3.73)** (3.17)** (3.02)** 

Dist. to Surge Boundary (miles) x Post-Sandy Dummy 0.019     
 (0.73) 

    
Dist. to Surg. x Post-Sandy for MN  0.535 0.151 0.148 0.148 

  (1.94) (0.68) (0.68) (0.68) 

Dist. to Surg. x Post-Sandy for BK  0.071 0.048 0.062 0.061 

  (2.81)** (1.16) (2.94)** (2.88)** 

Dist. to Surg. x Post-Sandy for BX  -0.192 -0.113 -0.142 -0.142 

  (6.39)** (2.50)* (4.81)** (4.97)** 

Dist. to Surge x Post-Sandy for QN  0.012 0.001 -0.015 -0.015 

  (0.44) (0.02) (0.78) (0.82) 

Dist. to Surge x Post-Sandy for SI  -0.072 -0.058 -0.089 -0.083 

  (1.80) (1.26) (2.49)* (2.43)* 

Sandy Dist. - FEMA  Dist. (miles) x Post-Sandy    0.096 0.10 

    (2.82)** (2.88)** 

Neighborhood  Occupancy Rate     0.147 

          (2.79)** 

R2 0.25 0.25 0.28 0.27 0.27 

# obs. 253,960 253,960 44,966 73,802 71,856 

Note: Prices are deflated by NYC CPI, excluding shelter. Only storm-related variables shown; full regressions 

include housing and neighborhood controls (see Appendix A). Standard errors were clustered by zip codes. T-

statistics are given below coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  
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Table 5: OLS regressions for apartment buildings not flooded. Dependent Var.: Ln(Real Price per Sq. Foot) 

  (1) (2) (3) (4) (5) 

Dist. To Shore  (miles) x Pre-Sandy Dummy 0.015 0.018 0.047 -0.006 -0.006 

 (0.55) (0.65) (0.57) (0.11) (0.11) 

Dist. To Shore  (miles) x Post-Sandy Dummy -0.109 -0.215 -0.208 -0.138 -0.141 

 (1.80) (3.32)** (2.04)* (1.37) (1.37) 

Dist. To FEMA Boundary  (miles) x Pre-Sandy Dummy -0.063 -0.065 -0.141 -0.167 -0.163 

 (0.50) (0.53) (0.51) (0.58) (0.55) 

Dist. To FEMA Boundary  (miles) x Post-Sandy Dummy -0.064 -0.039 -0.119 -0.114 -0.117 

 (0.32) (0.19) (0.70) (0.68) (0.69) 

Elevation (feet) x Pre-Sandy Dummy 0.001 0.001 0.000 -0.001 -0.001 

 (0.69) (0.47) (0.14) (0.40) (0.49) 

Elevation (feet) x Post-Sandy Dummy 0.004 0.005 0.003 0.002 0.002 

 (1.87) (2.52)* (1.38) (1.38) (1.29) 

Dist. to Surge Boundary (miles) x Post-Sandy Dummy 0.079     

 (1.06)     

Dist. to Surg. x Post-Sandy for MN  0.482 0.424 0.41 0.424 

  (2.50)* (2.60)* (2.17)* (2.23)* 

Dist. to Surg. x Post-Sandy for BK  0.235 0.203 0.22 0.228 

  (3.55)** (1.51) (2.22)* (2.26)* 

Dist. to Surg. x Post-Sandy for BX  -0.086 -0.002 -0.066 -0.054 

  (1.34) (0.02) (0.53) (0.42) 

Dist. to Surge x Post-Sandy for QN  0.155 0.007 0.068 0.075 

  (1.97) (0.04) (0.54) (0.59) 

Dist. to Surge x Post-Sandy for SI  -0.379 -0.184 -0.284 -0.253 

  (1.36) (0.69) (1.04) (0.87) 

Sandy Dist. - FEMA  Dist. (miles) x Post-Sandy    0.082 0.082 

    (0.71) (0.70) 

Neighborhood Occupancy Rate     0.115 

          (1.02) 

R2 0.29 0.29 0.35 0.31 0.31 

# obs. 28,456 28,456 6,721 9,575 9,460 

Note: Prices are deflated by NYC CPI, excluding shelter. Only storm-related variables shown; full regressions 

include housing and neighborhood controls (see Appendix A). Standard errors were clustered by zip codes. t-

statistics are given below coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  
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Table 6: OLS regressions for commercial buildings not flooded. Dependent Var.: Ln(Real Price per Sq. Foot) 

  (1) (2) (3) (4) (5) 

Dist. To Shore  (miles) x Pre-Sandy Dummy 0.087 0.086 -0.006 0.044 0.045 

 (2.59)* (2.50)* (0.08) (0.90) (0.91) 

Dist. To Shore  (miles) x Post-Sandy Dummy -0.023 -0.028 0.005 0.013 0.022 

 (0.39) (0.50) (0.06) (0.19) (0.34) 

Dist. To FEMA Boundary  (miles) x Pre-Sandy Dummy -0.029 -0.035 0.033 0.067 0.096 

 (0.21) (0.25) (0.18) (0.36) (0.51) 

Dist. To FEMA Boundary  (miles) x Post-Sandy Dummy -0.255 -0.221 -0.205 -0.255 -0.257 

 (1.17) (1.03) (1.00) (1.19) (1.28) 

Elevation (feet) x Pre-Sandy Dummy 0.001 0.001 -0.002 -0.001 0.000 

 (0.83) (0.78) (0.53) (0.42) (0.15) 

Elevation (feet) x Post-Sandy Dummy -0.001 0.001 -0.002 -0.001 0.000 

 (0.46) (0.29) (0.50) (0.32) (0.02) 

Dist. to Surge Boundary (miles) x Post-Sandy Dummy 0.095     

 (1.36)     

Dist. to Surg. x Post-Sandy for MN  0.487 0.20 0.189 0.166 

  (1.88) (0.80) (0.78) (0.68) 

Dist. to Surg. x Post-Sandy for BK  0.19 0.097 0.124 0.101 

  (2.54)* (0.54) (1.49) (1.22) 

Dist. to Surg. x Post-Sandy for BX  -0.013 -0.305 -0.138 -0.149 

  (0.13) (1.52) (1.10) (1.18) 

Dist. to Surge x Post-Sandy for QN  0.053 0.051 0.001 -0.009 

  (0.83) (0.27) (0.02) (0.10) 

Dist. to Surge x Post-Sandy for SI  -0.135 -0.011 -0.131 -0.184 

  (1.29) (0.06) (0.83) (1.18) 

Sandy Dist. - FEMA  Dist. (miles) x Post-Sandy    0.163 0.174 

    (1.29) (1.37) 

Neighborhood Occupancy Rate     -0.164 

          (0.93) 

R2 0.32 0.32 0.28 0.28 0.27 

# obs. 14,853 14,853 3,630 4,986 4,922 

Note: Prices are deflated by NYC CPI, excluding shelter. Only storm-related variables shown; full regressions 

include housing and neighborhood controls (see Appendix A). Standard errors were clustered by zip codes. t-

statistics are given below coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  
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Table 7: Descriptive statistics for LWR coefficients, standard errors, and t-statistics. 

Variable Mean Std. Dev. Min. Max. 

One & Two Family Homes (# obs.=5248) 

surge - fema coeff. 0.14 0.29 -4.39 3.35 

surge - fema s.e. 0.18 0.22 0.06 3.25 

surge - fema t-stat 1.07 1.41 -2.50 4.67 

∆occupancy coeff. 0.83 0.77 -2.77 16.35 

∆occupancy s.e. 0.46 0.43 0.27 12.23 

∆occupancy t-stat 2.22 1.34 -1.03 5.52 

∆mills ratio coeff. -1.89 0.81 -10.59 0.24 

∆mills ratio s.e. 0.38 0.19 0.24 3.96 

∆mills ratio t-stat. -5.55 2.78 -10.69 0.57 

∆days coeff. -0.0005 0.0005 -0.0020 0.0000 

∆days s.e. 0.000 0.000 0.000 0.000 

∆days t-stat. -12.89 8.67 -30.76 0.17 

year_quarter coeff. -0.61 0.15 -0.96 0.12 

year_quarter s.e. 0.06 0.03 0.04 0.46 

year_quarter t-stat. -12.51 5.06 -21.31 0.71 

latitude coeff. 0.41 3.19 -29.69 10.27 

latitude s.e. 1.81 0.98 0.81 22.30 

latitude t-stat. 0.33 1.85 -3.21 5.66 

longitude coeff. -0.56 2.53 -13.22 12.38 

longitude s.e. 1.51 1.07 0.74 16.02 

longitude t-stat. -0.24 1.91 -6.82 5.29 

Apartment Buildings (# obs.=1553) 

surge - fema coeff. 0.11 0.29 -0.69 5.28 

surge - fema s.e. 0.17 0.19 0.10 3.70 

surge - fema t-stat 0.88 1.30 -2.04 3.47 

∆occupancy coeff. 0.14 0.27 -1.89 3.09 

∆occupancy s.e. 0.41 0.29 0.29 4.57 

∆occupancy t-stat 0.37 0.49 -0.79 1.64 

∆mills ratio coeff. -0.16 0.57 -3.60 4.13 

∆mills ratio s.e. 0.39 0.59 0.27 10.95 

∆mills ratio t-stat. -0.55 1.53 -2.68 2.57 

∆days coeff. 0.00 0.00 0.00 0.00 

∆days s.e. 0.00 0.00 0.00 0.00 

∆days t-stat. -3.58 1.95 -6.48 2.31 

year_quarter coeff. -0.14 0.10 -0.60 0.23 

year_quarter s.e. 0.06 0.09 0.05 1.73 

year_quarter t-stat. -2.53 1.67 -5.02 2.12 

latitude coeff. 1.60 1.72 -3.05 22.15 

latitude s.e. 1.14 1.21 0.39 17.56 
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latitude t-stat. 1.67 1.30 -1.08 4.75 

longitude coeff. 0.12 2.67 -5.14 11.27 

longitude s.e. 1.11 0.78 0.67 15.17 

longitude t-stat. -0.08 2.41 -4.20 4.39 

Commercial Properties (# obs.=431) 

surge - fema coeff. 0.07 0.15 -0.60 0.24 

surge - fema s.e. 0.17 0.03 0.15 0.40 

surge - fema t-stat 0.47 0.77 -1.50 1.22 

∆occupancy coeff. 0.33 0.46 -1.72 1.39 

∆occupancy s.e. 0.47 0.27 0.39 3.39 

∆occupancy t-stat 0.76 0.92 -1.41 2.38 

∆mills ratio coeff. -0.24 0.09 -0.71 -0.03 

∆mills ratio s.e. 0.12 0.04 0.10 0.59 

∆mills ratio t-stat. -2.10 0.60 -2.86 -0.22 

∆days coeff. 0.00 0.00 0.00 0.00 

∆days s.e. 0.00 0.00 0.00 0.00 

∆days t-stat. -3.50 0.34 -4.28 -2.40 

year_quarter coeff. -0.24 0.06 -0.39 0.35 

year_quarter s.e. 0.07 0.03 0.06 0.37 

year_quarter t-stat. -3.53 0.72 -4.88 0.95 

latitude coeff. 0.08 1.80 -2.28 10.96 

latitude s.e. 0.79 0.31 0.67 4.04 

latitude t-stat. -0.12 1.70 -2.78 3.72 

longitude coeff. -2.05 0.98 -8.14 0.36 

longitude s.e. 0.66 0.22 0.55 2.63 

longitude t-stat. -3.06 0.85 -4.28 0.46 
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Table 8: OLS regressions of LWR Coefficients on census tract (CT) level and other controls. 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dist. To ESB (miles) -0.03 -0.031 -0.021 -0.011 -0.012 -0.014 -0.011 -0.012 -0.013
(4.40)** (4.11)** (2.75)** (1.91) (2.06)* (2.28)* (2.20)* (2.47)* (2.34)*

Latitude (degrees) -0.46 -0.49 0.085 -0.18 -0.20 -0.60 -3.14 -3.19 -3.10
(0.86) (0.90) (0.16) (0.48) (0.53) (1.71) (16.96)** (18.34)** (17.07)**

Longitude (degrees) 0.90 0.93 0.50 0.88 0.84 1.29 -0.29 -0.23 -0.23
(3.77)** (3.69)** (1.46) (2.86)** (2.67)** (3.60)** (1.12) (0.89) (0.81)

Elevation (feet) 0.002 0.002 0.002 0.000 0.000 0.000 0.001 0.001 0.001
(1.91) (1.88) (1.62) (0.05) (0.15) (0.11) (2.09)* (2.44)* (2.50)*

ln(CT Median Income) 0.027 0.101 -0.023 -0.015 0.031 0.021
(0.79) (3.14)** (1.01) (0.55) (3.30)** (2.20)*

ln(CT Population) 0.008 -0.003 0.022 0.008 0.005 0.003
(0.38) (0.16) (0.98) (0.38) (0.97) (0.53)

Average CT FAR 0.142 -0.025 -0.009
(3.15)** (1.89) (1.77)

# Subway stops w/in .5 mile 0.022 0.01 0.005
(2.83)** (2.92)** (3.63)**

White (% of CT pop.) 0.001 -0.0005 -0.0002899
(1.42) (0.69) (1.17)

Black (% of CT pop.) 0.003 -0.002 0.0002
(6.15)** (3.00)** (0.90)

Hispanic (% of CT pop.) 0.001 0.001 -0.001
(1.48) (0.93) (3.18)**

Manhattan Dummy 0.20 0.18 -0.28 -2.59 -2.60 -2.58 0.18 0.16 0.14
(0.74) (0.67) (0.79) (4.31)** (4.32)** (4.28)** (2.26)* (2.03)* (1.74)

Bronx Dummy -0.21 -0.20 -0.30 -2.33 -2.34 -2.36 0.20 0.21 0.20
(1.75) (1.65) (2.43)* (3.87)** (3.88)** (3.92)** (2.58)* (2.83)** (2.67)**

Brooklyn Dummy -0.18 -0.18 -0.22 -2.22 -2.23 -2.26 0.23 0.24 0.22
(3.06)** (3.04)** (3.19)** (3.75)** (3.77)** (3.81)** (3.17)** (3.25)** (2.94)**

Queens Dummy -0.26 -0.26 -0.19 -2.16 -2.16 -2.27 0.11 0.10 0.086
(3.31)** (3.35)** (2.13)* (3.65)** (3.66)** (3.84)** (1.24) (1.18) (0.95)

Constant 85.5 89.3 32.6 75.1 72.4 122.4 106.2 112.1 108.8
(2.62)** (2.58)** (0.83) (2.17)* (2.09)* (3.36)** (4.39)** (4.72)** (4.13)**

R
2 0.12 0.12 0.19 0.61 0.61 0.64 0.93 0.93 0.93

# obs. 5,248 5,248 5,248 1,553 1,553 1,553 431 427 427

1 & 2 Family Homes Apartment Buildings Commercial Properties

 
Note: Omitted borough is Staten Island. Standard errors were clustered by census tracts. t-statistics are given below 

coefficient estimates. **Stat. sig. at 99%. *Stat. sig. at 95%.  
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Table 9: p-values for LWR Hypothesis Tests for “Straddle” and “Both After” 

Test Straddle Both After 

Homes 

OLS Regression 0.011 0.883 

Significance Test for Bandwidth 0.000 0.000 

Significance Tests for Non-Stationarity 0.000 0.700 

# obs. 5248 1897 

Apartments 

OLS Regression 0.075 0.183 

Significance Test for Bandwidth 0.000 0.000 

Significance Tests for Non-Stationarity 0.000 0.375 

# obs. 1553 185 

Commercial 

OLS Regression 0.280 0.557 

Significance Test for Bandwidth 0.000 0.250 

Significance Tests for Non-Stationarity 0.000 0.852 

# obs. 431 66 

Note: Bold indicates p-values<0.10 (and hence rejection of null hypothesis at greater than 90% level. Also note that 

Bandwidth and Non-Stationarity tests are based on Monte Carlo simulations. Rep numbers for these MC simulations 

are as follows Homes-Straddle: 8, Homes-After: 10, Apartments-Straddle & Apartments After: 8, Commercial-

Straddle & Commercial After: 20. 
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Appendices: A, B, and C 

Appendix A: Data and Regression Results. 

A.1. The Data Set 

 

The full processed data set that we used for our analysis has 326,122 real estate sales between January 2003 and 

October 2014 throughout the entire city of New York. The data set has nearly every type of building, including one 

and two family homes, offices, factories, apartment buildings, etc. In short, it has both residential and commercial 

properties. The source of the real estate transactions is the New York City Department of Finance (DoF) website, 

http://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page. Data include sales price, date of sale, 

building address, some details about the property, including the square foot of building, the square foot of lot, year 

constructed, and the type of property. Note that this data is only for building sales and excludes condo or coop unit 

sales.  

 

Table A.1 lists the different property types and categories that were used in this paper. Building types information 

can be found in the NYC PLUTO data dictionary, https://www1.nyc.gov/assets/planning/download/pdf/data-

maps/open-data/pluto_datadictionary.pdf?r=16v2. 

 

{Table A.1 here—Building Types and Frequencies} 

 

The data downloaded from the DoF includes all transfer of title and does not distinguish open market transactions 

from the rest. As a result, we were required to process the data and make some assumptions in order to create a data 

set that seemed to include only open market sales. First, we deleted observations that had no data for lot size, 

building size, year of construction or were sold for less than $100. Then we generated the price per square foot for 

each property. In the hedonic regressions (Tables 1-6) we excluded from the regressions those properties that had 

price per square foot in the bottom one and top one percentiles, respectively, to avoid the influence of outliers.   

 

Each lot in New York City is assigned a unique borough, block and lot (BBL) number. Using the BBL we then 

merged the sales data with the 2014 Primary Land Use Tax Lot Output (PLUTO) file, which details property 

characteristics for every BBL in the city, some of which overlap with the salse data and some do not. The PLUTO 

file includes additional information, such as the property latitude and longitude, and the number of floors of the 

building.  The PLUTO file is available at https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-

mappluto.page. For the hedonic regressions, we adjusted the sales price by the NYC CPI without shelter 

(CUURA101SASL2RS), with the first quarter of 2014 as the base period.  

 

Sandy flooding maps and FEMA insurance flood maps were generously provided by the National Resources 

Defense Council (NRDC). They provided us with GIS shape files that indicated the locations in the city of the surge 

flood, and the locations of FEMA floodplain. We used the same files as shown in Figure 1 of their report on Sanday, 

at https://www.nrdc.org/sites/default/files/hurricane-sandy-coastal-flooding-report.pdf. 

 

Using this information, we then created our Sandy-related variables, which include the distance to the flood zone 

boundary for all properties, the distance to the shoreline, and the distance to the FEMA floodplain boundary. For 

flooded properties, we ascertained whether the building was in the FEMA floodplain map that was in effect in 2012. 

We also used the NRDC shape file to ascertain the distance of each property to the closest shoreline.  In addition, we 

obtained the elevation of each property from the New York City Digital Evolution model, at 

http://opengeometadata.stanford.edu/metadata/org.opengeoportal/Columbia:Columbia.usgs_nyc1999_1m/fgdc.html. 

The depth of the surge across the city was ascertained from the file “NYC_Feb14Final1mSurgeDataClipped.zip,” 

available at https://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0. 

 

Table A.2 gives the descriptive statistics for the data set.  

 

{Table A.2 about here Desc. Stats} 

http://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page
https://www1.nyc.gov/assets/planning/download/pdf/data-maps/open-data/pluto_datadictionary.pdf?r=16v2
https://www1.nyc.gov/assets/planning/download/pdf/data-maps/open-data/pluto_datadictionary.pdf?r=16v2
https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://www.nrdc.org/sites/default/files/hurricane-sandy-coastal-flooding-report.pdf
http://opengeometadata.stanford.edu/metadata/org.opengeoportal/Columbia:Columbia.usgs_nyc1999_1m/fgdc.html
https://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0
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Table A.3 gives regression results for one and two family homes, apartment buildings and commercial properties 

respectively. For the sake of brevity, we only include one specification for each property type, which is also 

Equation (5) in Tables 2-4. However, here, we do not restrict the sample period or distance to the shore in Table 

A.3. Other specifications are available upon request.  

Also note that the regressions for the price index (Figure 1) regressed the log of the real price per square foot on the 

following controls: distance to the Empire State Building, number of floors, number of units, number of buildings on 

property, ln(Land Area), ln(Building Area), year built, year-quarterly dummies, building class dummies and zip 

code dummies. Standard errors were clustered at the zip code level. We ran two regression one for only the dry 

properties and the other for the properties that experienced flooding. In the second equation, we also included an 

inverse Mill ratio that was calculated from a probit that estimated the probability that a property would be in the 

surge area. That is the dependent variable was equal to 1 if it was flooded or in the flood zone (prior to flooding), 0 

otherwise. Controls included year-quarterly dummies, building elevation, building elevation x post-Sandy dummy, 

the distance to the shoreline, and the distance to shoreline x post-Sandy dummy. Results available upon request. 

For the index, the base year was 2003Q1. We created the index by taking the exponent of the coefficients for the 

year-quarterly dummy variables and multiplying them by100, i.e. 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒𝑡 = 100 ∗ 𝑒𝑥𝑝(�̂�𝑡), where �̂�𝑡 , is the 

coefficient estimate for year-quarter t. Note �̂�2002𝑄1 = 0 because it was omitted from the regression. Thus 

2003Q1=100. 

{A.3. Regression Tables for Data Set} 

 

A.2. Repeat Sales and Fourier Price Index 

 

The master data set described above has a significant number of repeat sales. In particular, for each property type 

(one and two family homes, apartment buildings, and commercial properties), we created new data sets that 

contained each of these repeat sales. We excluded any property if we observed a change in square footage, 

construction year, building class type on the assumption that the nature of the property changed over time.  

 

From these remaining properties, we generated sales data sets where for each properties with at least two sales, we 

included those properties that had at least one sale before the storm and one sale after (i.e., has repeat sales that 

straddled the storm). These straddle data sets needed to be further processed. First, to simplify the analysis we 

decided to include only pairs of repeat sales. The included pairs where cases where the first sale occurred closest to 

before the storm date and the second sale occurred closest to the storm after the date. To mitigate against included 

property “flips” (i.e., those repeat sales that bought and sold for speculation and may have included renovations), we 

excluded pairs if the second sale took place within 30 days of the first. Lastly, we excluded those sales where the log 

of the price changes were either in the top or bottom one percentiles, respectively, within each property category. 

Table A.4. Presents the descriptive statistics for the difference of the key variables included in the locally weighted 

regressions. 

 

{Table. A.4. about here: Desc. Stats for Straddle Repeats} 

 

 

McMillen and Dombrow (2001) obtain the parametric version of the Fourier repeat sales estimator by first 

estimating the following equation: 

 

𝑙𝑛 (
𝑃𝑛𝑡+𝑗

𝑃𝑛,𝑡
) = 𝜑1(𝑧𝑡+𝑗 − 𝑧𝑡) + 𝜑2(𝑧𝑡+𝑗

2 − 𝑧𝑡
2) + ∑ [𝜎𝜌 (𝑠𝑖𝑛(𝜌𝑧𝑡+𝑗) − 𝑠𝑖𝑛(𝜌𝑧𝑡)) + 𝛿𝜌 (𝑐𝑜𝑠(𝜌𝑧𝑡+𝑗) −𝜌

𝑐𝑜𝑠(𝜌𝑧𝑡))] + (𝜇𝑛𝑡+𝑗 − 𝜇𝑛𝑡),                                 (6) 
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where ρ is the number of lags, zt = 2πTt /max(T), and Tt represents the numerical day in the sample at time t.8 After 

using least squares regressions to estimate the parameters 𝜙1 , 𝜙2, 𝜎𝜌, and 𝛿𝜌, one then calculates the fitted values of 

the following equation at various time points to obtain the price index: 

 

(�̂�𝑛𝑡+𝑗 − �̂�𝑛𝑡) = �̂�1(𝑧𝑡+𝑗 − 𝑧𝑡) + �̂�2(𝑧𝑡+𝑗
2 − 𝑧𝑡

2) + ∑ [�̂�𝜌 (𝑠𝑖𝑛(𝜌𝑧𝑡+𝑗) − 𝑠𝑖𝑛(𝜌𝑧𝑡)) + 𝛿𝜌 (𝑐𝑜𝑠(𝜌𝑧𝑡+𝑗) −𝜌

𝑐𝑜𝑠(𝜌𝑧𝑡))]                                                        (7) 

 

The lag length (ρ) is determined through minimization of the Schwarz information criterion (SIC). 9  

 

 

 

 

A.3. Probits for Inverse Mills Ratio for Repeat Sales 

As described in Section 3, we first ran probit regressions (for the dry properties only) to estimate the probability of 

repeat sales occurring. The dependent variable takes on the value of 1 if a second or third sales takes place for a 

particular property in the data set, 0 otherwise. Control variables included the census tract occupancy rate, the 

distance to the Empire State Building, the number of floors, ln(Land Area), ln(Building Area), year built, distance to 

shore x pre-Sandy dummy, distance to shore x post-Sandy dummy, FEMA dummy x pre-Sandy dummy, FEMA 

dummy x post-Sandy dummy, elevation x pre-Sandy dummy, elevation x post-Sandy dummy, distance to the surge x 

outside surge dummy x post-Sandy dummy, year-quarterly dummies and building class dummies. Table A.5 gives 

the results.  

{Table A.5 about here: Probits for Repeat Sales} 

 

 

 

 

Appendix B: Locally Weighted Regressions 

 

B.1: LWR Methodology 

 

“Locally weighted regression” (LWR) is the name of the general procedure where dik can be any distance measure 

(not just geographic. Geographically weighted regression (GWR) denotes that dik is a function of geographic 

distances, which here is the Cartesian distance between two latitude-longitude points. We implement LWR using the 

“spgwr” package in R and the “gwr” package in Stata. 

 

In this paper, we use locally weighted regressions, which is a version of weighted least squares, as discussed in 

Cleveland and Devlin (1988). Implementation of the model gives an estimated parameter for each target observation 

(i.e., building): 

�̂�𝑖  =  (∑𝑤𝑖𝑘𝑋𝑘𝑌𝑘)(∑ 𝑤𝑖𝑘𝑋𝑘𝑋′
𝑗𝑘)

−1
 , 

                                                            
8 As McMillen and Dombrow (2001) note, this essentially lines up the dates in the sample, in our case starting at 

January 1, 2003 as t=1, January 2, 2003 as t=2, etc., and rescales the time variable on the interval between 0 and 2π. 
9 xi should be adapted accordingly for the situation where ρ>1. In our application, 𝜌=1 minimizes the SIC. 
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where Xk is a vector of control variables including the constant for each observation except i; Yk is the dependent 

variable for all observations except i; wik is the weight that building k is given for building i; and the summations 

given by ∑ are taken over all buildings, k, and wii =0.  

We use a Gaussian (standard normal) weighting function (kernel) given by 

𝑤𝑖𝑘 = 𝑲 (
𝑑𝑖𝑘

𝑏
) = 𝒆

−(
𝒅𝒊𝒌

𝒃
)

𝟐

  , 

where dik is the Euclidian distance between building i and j (as measured in degrees latitude and longitude).  

McMillen and Redfearn (2010) notes that the choice of the kernel has little effect on the results since most kernel 

choices have rapid decay with distance. b>0 is the bandwidth parameter. The bandwidth parameter determines the 

“variance” of the weights. A larger b means that, ceteris paribus, observations further away will have larger weight 

values, compared to a smaller value of b.  

For the LWRs, the bandwidth value was selected using the standard cross-validation (C-V) method. The C-V 

algorithm runs a LWR for each observation for a given bandwidth value. Then a statistic is generated that is the 

mean squared residual of the LWR, where the residual is the difference between an observed value of the dependent 

variable and the predicted value, after omitting the ith observation from the model. The bandwidth that minimizes 

this statistic is used. See McMillen and McDonald (2004) for more information. As an example, if two properties are 

one mile apart, then dik is about 0.185. If, say, b=0.02, then the weight is about 0.424. Two properties that are 0.1 

miles apart means that dik=0.00146, so then wik=0.995. 

For each estimated coefficient, a standard error is also produced, given by equation 2.21 in Fotheringham et al. 

(2002). t-statistics are generated by taking the coefficient estimates divided by the standard errors. 

To tests hypotheses about the coefficients we use the tests from the ‘gwr’ package in Stata. See: 

https://www.staff.ncl.ac.uk/m.s.pearce/stbgwr.htm Two tests are performed. The first is the significance test of the 

bandwidth, which tests if the locally weighted regression model is a significantly better model than the OLS 

regression model. Second is the significance tests for non-stationarity, which tests if the LWR coefficients for a 

particular independent variables are the same or not. If the null hypothesis is rejected, it suggests that LWR is better 

able to fit the data than OLS. Note that if the non-stationarity test does not reject the null hypothesis and an OLS 

regression also does not reject the null hypothesis for a particular right hand side variable, it suggests that variable 

has no explanatory power with respect to the dependent variable. 

Appendix B.2. Additional Results for Straddle Data Set 

Table B.1 gives OLS results for the repeat sales data sets—the same ones used for the LWRs. The dependent 

variables is ∆𝑙𝑛𝑝𝑖 − ∆𝛼𝑖; that is, the change in sale price minus the change in the price index. The independent 

variables are Sandy-FEMA, change in census tract occupancy rate, change in the inverse Mills ratio, latitude, 

longitude, number of days between sales, and the year-quarter of the second sale. 

{Table B.1 about here: OLR on straddle data set} 

Table B.2. gives the bandwidths used for the LWRs, based on the cross-validation method. 

{Table B.2 about here: Bandwidths} 

Figure B.1 gives the histograms of the LWR coefficients for each property type. 

{Figure B.1 about here: Histograms of LWRs coefficients} 

 

 

https://www.staff.ncl.ac.uk/m.s.pearce/stbgwr.htm
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Appendix C: Census Tract Level Data Sources 

For each property included in the repeat sales LWRs that straddle the storm, we also have the respective 2010 

census tract for that property. We thus merged the LWR coefficient estimates with census tract level data. Table C.1 

gives descriptive statistics for this data set. Race and ethnicity is from the 2010 Census File 

DEC_10_SPF_P11_with_ann. Median income is from ACS_10_5YR_S1903_with_ann. Average Built FAR: NYC 

PLUTO FILE, 2016. Subway stops: 

https://www.baruch.cuny.edu/confluence/display/geoportal/NYC+Mass+Transit+Spatial+Layers. (Note also include 

Staten Island rail stops). 

{Table C.1 about here—Desc. Stats for variables for LWR regressions} 

 

 

 

  

https://www.baruch.cuny.edu/confluence/display/geoportal/NYC+Mass+Transit+Spatial+Layers
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Appendix Tables and Figures 

 

Table A.1: Building Types for each Class. Source: NYC DOF Sales File. 

Class # Building Class Nobs. 

One and Two Family Homes 

1 ONE FAMILY HOME        146,098  

2 TWO FAMILY HOME        128,381  

Apartments 

7 RENTALS - WALKUP APARTMENT           26,127  

8 

RENTALS - ELEVEVATOR 

APARTMENTS             3,265  

Commercial Buildings 

21 OFFICE BUILDINGS                              2,295  

22 STORE BUILDINGS                               5,806  

23 LOFT BUILDINGS                                   561  

27 FACTORIES                                     1,985  

29 COMMERCIAL GARAGES                            2,691  

30 WAREHOUSES                                    1,942  

32 HOSPITAL AND HEALTH FACILITIES                   285  

33 EDUCATIONAL FACILITIES                           196  

34 THEATRES                                           48  

35 

INDOOR PUBLIC AND CULTURAL 

FACILI                185  

38 ASYLUMS AND HOMES                                  71  

39 TRANSPORTATION FACILITIES                            8  

 

 

Table A.2: Descriptive Statistics for Data Set 

Variable Mean 

Std. 

Dev. Min. Max. # Obs. 

Building & Neighborhood Variables 

PPSF 240.02 138.47 0.42 1006.51 371,992 

Real Price Per Square Foot (2014Q4) 273.28 154.58 0.42 1297.92 371,992 

Dist. to the Empire State Bldg (miles) 9.18 3.68 0.003 21.98 371,992 

# Floors 2.81 3.65 1 114 371,322 

# Units 3.6 31.32 0 8800 371,992 

# Buildings 1 3.40 0 1929 371,322 

Lot Area (sq. ft.) 3,840 351667 0 1.23E+07 371,322 

Building Area (sq. ft.) 6,704 38532 0 8942176 371,322 

Year Built 1,942 32.55 1800.00 2014 371,992 

Occupancy Rate by Census Tract (%) 95.6 6.19 18.9 100 236,051 

1 & 2 Family Homes Dummy 0.738    371,992 
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Commercial Dummy 0.043    371,992 

Apartments Dummy 0.079    371,992 

Manhattan Dummy 0.048    371,992 

Bronx Dummy 0.108    371,992 

Brooklyn Dummy 0.313    371,992 

Queens Dummy 0.404    371,992 

Staten Island Dunny 0.127    371,992 

Sandy-Related Variables 

Elevation (feet) 16.3 11.98 -0.47 113.4 371,992 

Dist. To Shoreline (miles) 1.25 0.90 0.00 4.13 371,992 

Surge Height if Flooded 3.25 2.26 0.00 13.33 5,119 

Inundated Dummy x Post Sandy Dummy 0.008    371,992 

Post Sandy Dummy 0.132    371,992 

FEMA floodplain Dummy x Post Sandy Dummy 0.0004    371,992 

Distance to FEMA Floodplain (after Sandy) 0.821 0.653 -0.072 2.99 79,245 

Distance to Surge boundary (after Sandy) 0.743 0.625 -0.903 3.11 79,245 

Sandy Disantce - FEMA distance (miles; dry properties after 

Sandy) -0.071 0.309 -1.11 1.76 74,122 

 

Table A.3: Full OLS regressions. Dep. Var.: ln(Reap Price per Square Foot) 

  (1) (2) (3) (4) (5) (6) 

  

1&2 

Family 

Homes 

Apart- 

ments 
Commercial 

1&2 

Family 

Homes 

Apart- 

ments 
Commercial 

  All All All 
Dry 

only 
Dry only Dry only 

Occupancy Rate of Census 

Tract (%) 
0.21 0.015 -0.223 0.228 0.066 -0.282 

 (4.20)** (0.11) (1.30) (4.55)** (0.51) (1.71) 

Dist. Empire State Bldg. 

(miles) 
0.022 -0.048 -0.031 0.028 -0.048 -0.032 

 (1.48) (2.04)* (1.15) (1.68) (2.11)* (1.12) 

# of Floors 0.016 0.007 0.001 0.017 0.009 0.001 
 (1.98)* (0.70) (0.23) (2.03)* (0.86) (0.21) 

Total Units -0.02 0.000 -0.001 -0.019 0.000 -0.001 
 (4.66)** (2.59)* (2.19)* (4.62)** (2.23)* (2.12)* 

Number of Buildings 0.014 -0.064 -0.055 0.014 -0.006 -0.061 
 (2.92)** (2.09)* (2.91)** (3.61)** (0.40) (3.01)** 

ln(Land Area) (sq. ft.) 0.248 0.225 0.283 0.239 0.184 0.281 
 (20.33)** (5.44)** (10.31)** (20.19)** (4.53)** (9.79)** 

ln(Building Area) (sq. ft.) -0.683 -0.399 -0.465 -0.694 -0.373 -0.461 
 (51.75)** (10.57)** (18.04)** (51.79)** (9.87)** (17.52)** 

Year Built 0.002 0.001 0.000 0.002 0.001 0.000 
 (12.15)** (1.72) (0.70) (11.96)** (1.00) (0.25) 
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Dist. To Shore  (miles) x 

Pre-Sandy Dummy 
0.021 0.129 0.08 0.014 -0.01 0.07 

 (0.60) (2.34)* (2.08)* (0.78) (0.28) (1.81) 

Dist. To Shore  (miles) x 

Post-Sandy Dummy 
-0.001 -0.007 0.003 -0.008 -0.065 0.02 

 (0.03) (0.11) (0.05) (0.28) (0.77) (0.34) 

FEMA Zone Dummy x Pre-

Sandy Dummy 
0.07 -0.04 -0.009 0.046 -0.13 0.035 

 (1.43) (0.19) (0.05) (1.01) (0.60) (0.20) 

FEMA Zone Dummy x Post-

Sandy Dummy 
-0.028 -0.037 -0.284 -0.07 -0.146 -0.231 

 (0.51) (0.19) (1.44) (1.40) (0.73) (1.16) 

Elevation (feet) x Pre-Sandy 

Dummy 
0.004 0.163 0.003 0.002 -0.001 0.003 

 (0.12) (2.51)* (1.61) (2.57)* (0.49) (1.51) 

Elevation (feet) x Post-

Sandy Dummy 
0.006 0.171 0.001 0.005 0.004 0.001 

 (0.16) (2.59)* (0.33) (4.03)** (1.94) (0.48) 

Dist. to Surge Boundary 

(miles) x Post-Sandy 

Dummy 

0.015 0.116 0.092      

 (0.59) (1.49) (1.41)      

Inundated Dummy x Post-

Sandy Dummy 
-0.002 0.284 0.202      

 (0.06) (2.37)* (1.31)      

Surge height (feet) x Post-

Sandy Dummy 
-0.034 -0.1 -0.115      

 (2.46)* (2.70)** (2.75)**      

Inverse Mills Ratio -0.003 -0.186 0.128      
 (0.06) (2.54)* (1.08)      

Sandy Dist. - FEMA  Dist. 

(miles) x Post-Sandy 
     0.15 0.274 0.206 

      (3.19)** (2.17)* (1.88) 

Dist. to Surg. x Post-Sandy 

for MN 
     0.272 0.266 0.365 

      (1.20) (1.21) (1.41) 

Dist. to Surg. x Post-Sandy 

for BK 
     0.051 0.106 0.144 

      (2.08)* (1.25) (1.93) 

Dist. to Surg. x Post-Sandy 

for BX 
     -0.265 -0.253 -0.158 

      (6.58)** (1.96) (1.38) 

Dist. to Surge x Post-Sandy 

for QN 
     -0.012 -0.03 0.018 

      (0.46) (0.29) (0.24) 

Dist. to Surge x Post-Sandy 

for SI 
     -0.139 -0.557 -0.249 

      (2.87)** (2.01)* (1.87) 

Constant 3.951 5.427 7.216 4.251 6.362 7.639 

  (8.25)** (5.63)** (7.97)** (8.83)** (6.42)** (8.06)** 

R2 0.23 0.3 0.27 0.23 0.3 0.27 

N 169,128 18,470 10,428 159,235 18,770 9,766 
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t-stats. below estimates (clustered by zip code). Note year-quarterly dummies and building class dummies included. F-stats for 

dummy groups are all statistically significant. **Statistically significant at 99% level; *Statistically significant at 95% level.  

 

Table A.4: Descriptive Statistics for Straddle Repeats Data Set 

Variable Mean 

Std. 

Dev. Min. Max. Nobs. 

One & Two Family Homes 

∆lnprice 0.148 0.571 -1.797 2.262 5,248 

∆α 0.855 0.525 -0.093 2.306 5,248 

∆lnprice - ∆α -0.707 0.808 -3.798 2.001 5,248 

∆Occupancy Rate -0.018 0.074 -0.803 0.466 5,248 

∆Inv. Mills Ratio -0.070 0.112 -0.589 0.275 5,248 

Surge - FEMA -0.102 0.353 -1.108 1.704 5,248 

Apartments 

∆lnprice 0.329 0.655 -2.911 3.258 1,553 

∆α 0.473 0.343 -0.202 1.976 1,553 

∆lnprice - ∆α -0.144 0.694 -4.098 2.748 1,553 

∆Occupancy Rate -0.026 0.086 -0.760 0.086 1,553 

∆Inv. Mills Ratio -0.250 0.162 -0.728 0.199 1,553 

Surge - FEMA -0.064 0.318 -1.106 1.634 1,553 

Commercial 

∆lnprice 0.294 0.704 -2.579 2.940 431 

∆α 0.323 0.338 -0.762 1.351 431 

∆lnprice - ∆α -0.029 0.769 -2.649 2.928 431 

∆Occupancy Rate -0.038 0.094 -0.659 0.185 431 

∆Inv. Mills Ratio -0.269 0.371 -5.353 0.058 431 

Surge - FEMA -0.087 0.297 -1.107 1.478 431 

 

Table A.5: Probits for Repeats Sales. Dep. Var.=1 if sale is a repeat, 0 otherwise. 

  
1 & 2 Family 

Homes Apartments Commercial 

Occupancy Rate of Census Tract (%) -0.64 -0.602 -0.233 
 (2.92)** (2.47)* (1.24) 

Dist. Empire State Bldg. (miles) 0.018 0.027 0.009 

 (2.18)* (2.19)* (1.47) 

# of Floors 0.052 0.002 -0.003 
 (2.75)** (0.19) (0.51) 

ln(Land Area) (sq. ft.) -0.361 -0.189 -0.167 
 (10.29)** (3.86)** (5.97)** 

ln(Building Area) (sq. ft.) -0.14 0.106 0.126 
 (2.96)** (2.13)* (5.00)** 

Year Built -0.002 0 0.003 
 (2.93)** (0.05) (4.22)** 



44 
 
 

Dist. To Shore  (miles) x Post-Sandy Dummy 0.125 -0.075 -0.096 
 (2.89)** (1.18) (1.36) 

Dist. To Shore  (miles) x Pre-Sandy Dummy 0.118 0.083 0.001 
 (3.94)** (2.25)* (0.04) 

FEMA Zone Dummy x Post-Sandy Dummy 0.004 -0.154 -0.102 
 (0.03) (0.46) (0.34) 

FEMA Zone Dummy x Pre-Sandy Dummy -0.146 -0.468 -0.279 
 (1.54) (2.01)* (1.34) 

Elevation (feet) x Pre-Sandy Dummy -0.006 0.001 -0.001 
 (2.56)* (0.34) (0.48) 

Elevation (feet) x Post-Sandy Dummy -0.003 0.005 -0.001 
 (1.50) (1.49) (0.35) 

Dist. to Surge Boundary (miles) x Post-Sandy Dummy -0.062 0.124 0.151 

 (1.07) (1.39) (1.49) 

Constant 7.152 0.366 -5.749 

  (5.63)** (0.24) (4.16)** 

# obs. 158,336 18,578 9,578 

Pseudo R2  0.044 0.031 0.049 
z-stats. below estimates (clustered by zip code). Note year-quarterly dummies and building class dummies included. F-stats for 

dummy groups are all statistically significant. **Statistically significant at 99% level; *Statistically significant at 95% level.  

 

Table B.1: OLS Regressions for Straddle Data Sets. Dep. Var: ∆lnprice - ∆α 

  
1 & 2  Family 

Homes 
Apartments Commercial 

Surge - FEMA 0.327 0.136 -0.01 
 (7.18)** (1.85) (0.08) 

∆Occupancy Rate 0.708 0.113 -0.007 
 (5.89)** (0.59) (0.01) 

∆Inv. Mills Ratio -1.94 -0.069 -0.196 
 (13.55)** (0.30) (1.72) 

# days between sales -0.001 -0.0002 -0.0002 
 (15.49)** (4.46)** (4.78)** 

Year-Quarter -0.636 -0.137 -0.271 
 (28.33)** (4.38)** (4.29)** 

Latitude (degrees) -0.378 1.93 -0.556 
 (1.47) (5.68)** (1.04) 

Longitude (degrees) -0.683 -0.482 -1.39 
 (3.88)** (1.01) (2.57)* 

Constant 1,244.8 162.6 466.4 

  (23.92)** (2.17)* (3.06)** 

R2 0.56 0.15 0.14 

# obs. 5,248 1,553 431 

t-stats. below estimates (clustered by zip code). **Statistically significant at 99% level; *Statistically significant at 95% level.  
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Table B.2 Table of bandwidths.  

Bandwidth 

  Straddle Both After 

Homes 0.0186 0.0423 

Apartments 0.0369 0.4019 

Commercial 0.0996 0.1415 

Note: The “straddle” column is for the sales that straddled Hurricane Sandy. The "Both After" are for the repeat 

sales that both occurred after the storm. The bandwidths were selected using the CV-method described above. 

 

 

Figure B.2: Relative Frequency Histograms (%) of LWR Coefficients. 

 

 

Table C.1 Descriptive Statistics for Variables used in LWR Coefficient Regressions 

Variable Mean St. Dev. Min. Max. # obs. 

CT Population 3770.8 46.8 0 26588 2168 

CT Hispanic (%) 26.5 22.3 0 96.3 2137 

CT White (%) 33.5 30.9 0 100 2137 

CT Black (%) 24.5 29.7 0 100 2137 

CT Median Household Income 53447 27386 0 250000 2165 

CT Avg. Built FAR 1.44 1.38 0.29 14.8 1686 

# Subway Stops w/in half mile 1.79 2.27 0 19 7232 

Note: CT=Census Tract. 
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