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Abstract

An understanding of the spatial variation in the impacts of living near reservoirs, dams, and undevel-

opable land is important in explaining residential property values. While there is a body of literature

on the e�ects of proximity to dams and reservoirs on housing prices, little known research attempts

to determine if various individual houses are impacted di�erently depending on their locations and

years of sale. We examine properties in Barkhamstead, Connecticut that sold between 2001 and 2015.

We utilize non-parametric regression techniques to allow for the possibility that bodies of water, dams

and undevelopable land areas, a�ect various house prices di�erently, depending on their locations and

when they are sold. We �nd that for the most part, proximity to dams leads to lower housing sale

prices, with the magnitudes of these e�ects varying across geographic space and over time. In general,

undevelopable land area is valued as an amenity in this rural town. The signs of the e�ects of proximity

to the nearest body of water vary � some properties bene�t from proximity while others experience

lower sale prices when they are closer to water. We also control for other key housing characteristics

and environmental variables, such as elevation relative to the nearest dam, numbers of bedrooms and

baths, age of properties, year of sale, square footage and acreage, and others. We plot the parameter

estimates over time for some variables to demonstrate how the spatial heterogeneity changes after the

recession that began in late 2008.
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1 Introduction

Proximity to reservoirs and dams can have both positive and negative impacts on house prices.

For instance, reservoirs can be considered �amenities� due to open space, wildlife, and aesthet-

ics/views. On the other hand, there can be a higher risk of �ooding near dams and reservoirs,

which can be capitalized into house prices and lead to lower property values. An understanding

of the potential positive and negative impacts of living near reservoirs, dams, and undevelopable

land due to relatively steep slope, is important in justifying the operation of water (and possibly

other) utilities near residential properties.

While there is a body of literature on the e�ects of proximity to dams and reservoirs on

housing prices, little known research attempts to determine if various individual houses are

impacted di�erently depending on their locations and years of sale. Also, relatively little is

known about how proximity to these amenities a�ects house prices di�erently during a �boom�

period versus a �bust� period. We examine properties in Barkhamstead, Connecticut that sold

between 2001 and 2015. This covers a period of a signi�cant housing �boom� (2002-2009) and

also a �bust� (the housing crisis which began in 2009).

The reservoir in Barkhamstead supplies much of central Connecticut with its drinking water.

We utilize non-parametric regression techniques (Geographically Weighted Regressions) to allow

for the possibility that the major reservoir and dams in Barkhamstead a�ect various house

prices di�erently, depending on their locations and when they are sold. We follow a similar

approach of Saiz (2010) and generate estimates of land with su�ciently steep slopes that inhibit

development. We also estimate a set of partial linear (i.e., semi-parametric) models. We �nd

that for the most part, proximity to dams with higher elevations than properties leads to lower

housing sale prices, with the magnitudes of these e�ects varying across geographic space and

over time. Properties with higher census block steep slope land area tend to sell for higher

prices, implying this type of land is a amenity in this rural town.

The signs of the e�ects of proximity to the reservoir vary � some properties bene�t from

proximity while others experience lower sale prices when they are closer to the reservoir. We
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also control for other key housing characteristics and environmental variables, such as elevation,

numbers of bedrooms and baths, age of properties, year of sale, square footage and acreage, and

others. We generate �gures showing the range of the coe�cients for several of the key variables

to illustrate the heterogeneity (e.g., see Figure 3).

The remainder of this paper proceeds as follows. First, we review the literature on proximity

to wetlands, dams, and water bodies. Then we describe our empirical approaches, followed by

a discussion of the data. After presenting our results, we describe some robustness checks and

�nally conclude with a summary of the key �ndings of the paper.

1.1 Literature Review

There are several studies on the relationships between housing prices and proximity to water

and/or dams. However, no known research considers all of these e�ects together with the

impacts of before and after a housing crisis, in a semi-parametric estimation framework.

Cohen et al (2015) consider wetlands and water impacts, but they ignore the important

aspects of dams, undevelopable land, and elevation, and they examine a shorter sample period

that stops before the beginning of the housing crisis. They �nd that while overall water is an

amenity, various properties are a�ected di�erently by proximity to wetlands and water. Their

results are di�erent from the �ndings in our paper because their focus was on wetlands and

water bodies, while here we have relatively few properties in the wetlands, and we focus more

of our attention here on the impacts of elevation of nearest dam and undevelopable land.

Other relevant recent studies include Atreya et al (2016), who �nd a di�erent e�ect of

distance to the coastline in Texas, depending on �ood risk. Ironically, they also �nd that the

willingness to pay for avoiding �ood risk is higher for properties that are further away from

the shore. However, they do not use a semi-parametric estimation framework to arrive at these

conclusions.

Rouwendal (2016) examine the e�ects of proximity to water, using a sample of identical

Dutch houses. This simpli�es the hedonic housing problem because it is not necessary to

�control� for di�erences in characteristics, other than proximity to water. They �nd that in this
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context, the potential bene�ts from water proximity are smaller, possibly due to �speci�cation

bias� that can occur in the typical hedonic model.

Lewis et al (2008) examine willingness to pay for removal of a dam in Maine. Their approach

is rich in the sense that their examination of house prices pre- versus post- dam removal, for

various distances from the dam, enables the identi�cation of the bene�ts of living far from the

dam.

Bohlen and Lewis (2009) study another river and dam in Maine, and in this instance, they

�nd a 16% premium for living closer to the river. They also �nd a premium for living closer to

the dam, although the level of statistical signi�cance is lower for this variable. These con�icting

�ndings of the impacts of a dam on housing prices, for two studies of di�erent dams in the

state of Maine, imply that a semi-parametric approach could be fruitful in our case of dams in

Barkhamstead, Connecticut.

McKenzie and Levendis (2010) consider elevation of houses (although not the relative ele-

vation with respect to dams), and they �nd that higher elevation houses tend to sell for higher

prices.

Another important consideration is whether or not to examine �ood zones. Speyer and

Ragas (1991) note that there can be biases when using a dummy variable to represent �ood

zones, because the FEMA �ood zones typically encompas broad areas. Therefore, a �ood zone

dummy likely also re�ects the e�ect of other factors besides being in a �ood zone.

In rural areas the issue of undevelopable land is worthy of attention. Saiz (2010) is a more

broad study, at the U.S. Metropolitan Statistical Area (MSA) level, of the impacts of water

bodies and elevation on the amount of developable land in each MSA. He �nds that development

is detrimentally a�ected in MSA's with greater amounts of �steep-slope terrain�.

To further explore these issues and the importance of considering spatial heterogeneity,

we control for elevation relative to the nearest dam, and undevelopable land area, in a non-

parametric manner in our analysis. We �nd that properties in census block groups with greater

steep-slope terrain sell for higher prices, which implies the steep-slope terrain is an amenity in

this rural setting (in contrast to the Saiz, 2010 disamenity �ndings for MSAs, which mostly are
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comprised of urban areas where land is relatively scarce).

2 Approach

Our analysis of the impacts of water bodies and dams on housing prices is based on a hedonic

housing price model. Our hedonic model with linear regression function takes the following

form:

Yi = Xiβ + ui, i = 1, · · · , N (1)

where Yi is the logarithm of sale price and Xi is a vector of house characteristic variables,

including number of baths, bedrooms, square footage, acres, as well as neighborhood variables

such as physical locations (longitude and latitude), logarithm of distance to the nearest water

body, and dummy variables such as whether a property's elevation is below the nearest dam,

and a shift dummy for whether a house is sold after the start of the 2008 recession.

2.1 Locally weighted regression (LWR)

In addition to the ordinary least squares (OLS) estimation of the model, we use a non-parametric

approach - locally weighted regressions (LWR), also commonly referred to as Geographically

Weighted Regression (GWR) - to approximate the regression function, considering the fact that

the data are prices of houses at �xed points with spatial coordinates and years of sale. In a

LWR model, the spatial coordinates of the data are used to calculate distances that are used

in a kernel function to determine weights of spatial dependence between observations. Time of

sales are used similarly to determine weights of time dependence between observations. The

hedonic house price function is assumed to take the following form:

Y = Xiβ(si, ti) + ui, i = 1, · · · , N

where si is the geographic location variables of observation i and ti is the time of sale on

observation i, β(si, ti) is a column vector of regression coe�cients, each of which is an unknown
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function of si and ti. The coe�cient vector at location si = s and at time ti = t , denoted by

β(si = s, ti = t) is calculated by minimizing the following objective function with respect to a

and b,
N∑
i=1

(yi − a− b′xi))2K
(
di
h

)
K
(
τi
h

)
(2)

where K(·) is a kernel function that determines the weight that observation i receives in the

regression; di and τi are the distance between observation i and location (s, t) in geographic

space and in time space, respectively;1 and h is the bandwidth. The Gaussian kernel function is

used to calculate the weight assigned to each observation, based on its distance from the target

point, both in geographic location and time/year.2Many researchers have shown that choice of

kernel function has little e�ect on the results (see, e.g. McMillen and Redfearn, 2010). The

performance of the kernel estimator is much more sensitive to the choice of bandwidth, h . Given

that the houses in our dataset are located densely in some areas and sparse in other areas, a

�xed bandwidth would lead to over-smoothing in areas where many observations are present

and under-smoothing in areas with sparse data. Following McMillen and Redfearn (2010) we

use a �Kth nearest neighbor� (K-nn) approach in calculating the bandwidth. For a target point

we chose a bandwidth to include a �xed percentage of the sample into the local averaging.3

Following the method suggested in Cleveland and Devlin (1988), we apply a version of an

F-test for the signi�cance of each explanatory variable in f(zi). Let L be the N by N matrix

so that Ỹ = LỸ + ε, where Ỹ = Y −X · β̂ is the vector of the dependent variable and ε is the

regression residuals in the LWR regression. De�ne d1 = tr(L), d2 = tr(L′L) and κ = 2d1 − d2.

Then the F-test is simply:

(Ỹ ′RrỸ − Ỹ ′RaỸ )/(κa − κr)
(Ỹ ′RaY )/(n− κa)

∼ F (κa − κr, n− κa)

1 The distances di and τi are normalized with the standard deviation of {di}Ni=1 and {τi}Ni=1,.
2 The kernel function on time assigns positive weight only for τi ≤ 0 and assigns 0 weight for τi > 0, i.e. only

those observations that precede the observation at (s, t) in time get positive weights.
3 We use two window sizes: 50 percent and 100 percent. With a Gaussian kernel function (Standard normal

density function) the bandwidth are chosen to include a speci�ed percentage (25 percent or 100 percent) of the
sample in the window - two standard deviations of the target point. Sample points outside of this window get
near-zero weights and are essentially ignored in the averaging. One could potentially use di�erent thresholds in
bandwidth selection, e.g. three or four standard deviations, but this will not change the results signi�cantly.
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where the subscript a and r are used to indicate whether the quantity is calculated from the

restricted model (null) or the alternative model. To test the signi�cance of each variable, the

above F-statistics can be calculated as with that variable dropped from the model. The P-values

from these tests are probabilities of the null hypothesis that the coe�cients equal zero. In this

sense this F-test indicates whether an explanatory variable in the non-parametric component

of the regression adds any explanatory power to the model.

2.2 Partial Linear Regression

While the OLS model may impose too many restrictions on how X a�ects Y , the locally

weighted regression might give too many degrees of freedom in each point of estimation (i.e.

it may lead to too few observations being used in each point estimation), especially with a

relatively small data set. As a compromise in modeling the hedonic price function we also take

a semi-parametric approach - a partially linear model - in estimating the average e�ect of a

single variable, say X, of our interest. The partial linear model takes the following form:

Yi = Xiβ + f(Zi) + ui, i = 1, · · · , N ; (3)

where Xi is of dimension one, β is a unknown parameter that is of our main interest, Zi is of

dimension d × 1, f(·) is a smooth but otherwise unknown function. The advantage of using

a semi-parametric model over a fully non-parametric one is for convenience in interpretation

and the faster converging rate, the later of which is particularly important given our sample

size. The estimate of β provides an estimate of the conditional expectation of Yi given Xi after

controlling in a general, non-parametric way for the e�ects of all other variables.

Following Robinson (1988), by taking the expectation of (3) conditional on variables in the

non-parametric component, zit, then subtracting it from (3) we have

Yi − E(Yi|Zi) = [Xi − E(Xi|Zi)]
′
β + ui (4)
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If we use the following notations: ∇i = Yi −E(Yi|Zi) , Vi = Xi −E(Xi|Zi) , then we can write

the above equation as

∇i = Viβ + ui (5)

Then a simple OLS regression of ∇ on V will give a consistent estimate of β, assuming E(Yi|Zi)

and E(Xi|Zi) are known. In practice, these conditional expectations can be approximated using

locally weighted regression (LWR) following McMillen and Redfearn (2010). We follow Baltagi

and Li (2002), and Cohen, Osleeb and Yang (2014), by rotating each independent variable in

the parametric part of the model, X, and leaving the rest of the independent variables in the

non-parametric component of the model, f(z). With this approach we can obtain an estimate

of the marginal impact of each individual factor on the housing price after controlling for the

e�ects of all other variables in a non-parametric way.

3 Data

Barkhamsted is a town in Litch�eld County, Connecticut and contains three villages, Pleasant

Valley, Riverton, and the remainder of the town. According to the United States Census Bureau,

the town has a total area of 38.8 square miles (100 km2), of which, 36.2 square miles (94 km2) of

it is land and 2.6 square miles (6.7 km2) of it (6.72%) is water. A high percentage of the land in

the town is owned by the State of Connecticut as state forest and by the Metropolitan District

Commission as watershed land. Major bodies of water include the Barkhamsted Reservoir,

Lake McDonough, and the Farmington River. In total, there are 204 water features that we

consider in our analysis. The Barkhamsted Assessor Department provided the information

regarding non-locational characteristics of the single-family houses sold between 2001 and 2015,

including: sales price (nominal),4 year built, year sold, acreage, square footage, number of

bedrooms and number of bathrooms. The variables included home address, living area square

footage, the age of the property in years, and the year of the sale. Also, data on the number

4 Typically, in parametric hedonic models researchers include time �xed e�ects when using nominal sales
prices. But in a nonparametric or semi-parametric model as we use here, we include time in the kernel function,
so we are already controlling for year of sale in the estimations.
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of bedrooms, number of bathrooms, the actual sale price (USD), and the number of acres were

compiled. Among all of the single family properties in Barkhamsted, there were 495 houses

sold in the period 2001-2015. Following Cohen, Cromley and Banach (2014), we use dummy

variables to mark if the property was located either in Riverton or Pleasant Valley, the two of

the three villages in Barkhamsted. Properties in neither of these areas are indicated to be in an

�Other� category.

The locations of the single-family houses sold between 2001 and 2015 were identi�ed in a two-

step process. First, the location of the houses were georeferenced using the addresses provided

the Barkhamsted Assessor Department via the mapping function of the Google Fusion Table

software (tables.googlelabs.com). Second, the accuracy of the georeferenced data was veri�ed

using the MapGeo Barkhamsted GIS System (barkhamstedct.mapgeo.io) in order to ensure that

the points representing the locations of the single-family houses sold between 2000 and 2015

were positioned atop (or as close to) the center of the appropriate house. The boundaries of the

Riverton and Pleasant Valley neighborhoods, water bodies, wetlands and Barkhamsted reservoir

were obtained from Cohen et al. (2015). Maps of elevation, slope, and the location of dams in

Barkhamsted were obtained from the Connecticut Department of Energy and Environmental

Protection, or CT DEEP (www.ct.gov/deep/gisdata). Data utilized to calculate the amount of

undevelopable land per census block (following the approach for the MSA-level by Saiz, 2010)

include the CT DEEP slope map and 2010 United States Census block geography. We also

determine whether each property is at the same or lower elevation than the nearest dam, and

generate a dummy variable equal to 1 in this case, and 0 otherwise.

Descriptive statistics and a description of the variables are presented in Table 1. The average

home sold for about US$247,642; there was no outwardly discernible pattern to the spatial dis-

tribution of sales price for individual homes. The highest and lowest quantiles were distributed

in all parts of the town in proximity to one another. The average home also has about 1,800

square feet of living area, on a 3.2 acre property, about 850 feet above sea level, about 780 feet

from the nearest water body, and 4133 feet from the nearest dam. See Figure 2 for a map of

the relative elevation of each house with respect to the nearest dam. Because water features are
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not uniformly distributed across the town, homes that are near water features are clustered in

di�erent areas and homes that are distant from water are clustered in other areas.5

4 Results

Parameter estimates for the di�erent model speci�cations described above are presented in

Tables 2 - 4. The OLS results estimated from model (1) are given in Table 2. The impact

from basic house characteristic variables, including property acreage, house age, square footage,

number of bedrooms and bathrooms, are consistent with expectations and they are statistically

signi�cant. For example, the parameter estimate on the log of the number of acres is 0.0078,

implying that every 1 percent increase in lot size drive up the house sale price by 0.0078 percent.

The parameter estimate on the log of age is −0.001, implying that sale prices fell by about 0.001

percent for every 1 percent increase in a property's age. In addition, the parameter estimate on

the post-2008 dummy is negative and signi�cant, implying that sales prices were going down

durng and after the real estate �bust� experienced in most parts of the U.S. that started in

late 2008. Meanwhile, houses in Riverton and Pleasant Valley sold for signi�cantly more than

houses in the �other� neighborhood. This is consistent with the previous Barkhamsted study

by Cohen et al (2015). The parameter estimate on undevelopable land in the census block

group is positive and insigni�cant. Also, the parameter estimates on elevation relative to the

nearest dam and distance to the nearest water body are insigni�cant. This makes it di�cult

to attribute changes in house prices to these geographic variables. For example, while the

parameter estimate on distance to nearest water bodies is positive, one cannot infer that on

average houses closer to water body sold for less than houses that were further from their nearest

water body because that estimate is highly insigni�cant based on this linear model. However, the

linearity assumption in OLS might be a over simpli�cation and miss some important aspects of

the data set. First, many of the characteristic variables and geographical variables might impact

5 A helpful reviewer suggested we consider developable land sales in addition to improved single family homes.
While we have data on the undevelopable land area by Census block group, the Barkhamsted assessor indicated
that she does not have data available to share with us on speci�c sales of developable land.
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the sale price in a nonlinear fashion and this would be masked by a OLS model. Using distance

to the nearest water body as an example, while a 10% increase in the distance to the water

body might have a substantial impact on price of houses within immediate vicinity of a lake,

the same increase might not a�ect price of houses at all that are located further away from the

lake. Second, as common in real estate studies, spatial dependence, as well as dependence across

time period, might play an important role in determining a house's market value. McMillen

and Redfearn (2010) discuss how with LWR the �combination of functional form �exibility and

spatially varying coe�cients helps to reduce spatial auto-correlation without imposing arbitrary

contiguity matrices or distributional assumptions on the data�. While LWR accounts for spatial

dependence, we, in this paper, extend it to allow coe�cients varying across both space and time

periods. See, for instance, an similar application of LWR in Cohen, Osleeb and Yang, (2014).

Finally, it is important to note that we avoiding including too many distance variables in the

regressions, since changing the distance to one amenity also impacts the distance to another,

despite the fact that the regression parameters assume all other regressors are held constant.

Therefore, based on the guidance provided by Ross et al (2011), we include one distance variable,

the distance to the nearest water feature.

Parameter estimates from LWR, with two di�erent window sizes of 50% and 100%, are sum-

marized in Table 3. Note that with a non-parametric model, actual parameter estimate values

change across observations. Table 3 presents the means of these estimates. Meanwhile, unlike in

a parametric model, it is well known that a non-parametric estimate is biased on �nite samples,

and the inferences are not possible in a usual manner. As an alternative, following Cleveland

and Devlin (1988), we apply a set of F-tests for the signi�cance of each of the explanatory

variables. Based on these results, the means of coe�cients for all of the characteristic variables

are consistent with the OLS model and signi�cant, with the exception of the coe�cient on the

number of bedrooms being insigni�cant. The undevelopable land coe�cient is once again pos-

itive but insigni�cant. The parameter estimates on the post 2008 dummy, distance to nearest

water body, and elevation relative to the nearest dam, are insigni�cant, which again makes it

di�cult to tell what the model implies in regard to the impact of these variables on the house
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prices. Reducing the window size from 100% to 50% generally reduces P-value of the F-tests,

but not enough to make these variables statistically signi�cant. This issue might be attributed

to the fact that non-parametric models typically require a large sample size in order to show

consistency. The required sample size increases exponentially with the number of explanatory

variables, which is known as the �curse of dimensionality�. Given that our data set has only 495

observations but 12 explanatory variables, these results should not be unexpected. It actually

provides another motivation for a semi-parametric model speci�cation, as in the partial linear

model.

Table 4 shows the partial linear model parameter estimates, with two di�erent window sizes

of 50% and 100%. One advantage of this model is that the parameter estimate from the linear

part of the model is well behaved statistically, i.e. converges at rate of square root of N , the

same as that of a parametric model. Therefore tests of signi�cance can be done based on the

standard normal distribution. An immediate observation from the results in Table 4, as a

contrast to the OLS or LWR results, is that all coe�cients are highly signi�cant. We argue

that the smaller window size is preferred in our partial linear model, because with the bigger

window size (100%) we e�ectively used more observations in estimating a local e�ect, making

it more similar to a parametric model. A smaller window size enables us to better capture the

local e�ects presented in the data. For this reason, our interpretation will be focused on results

obtained with smaller window size (50%).

Parameter estimates on house characteristic variables, including a house's age, acreage,

square footage, number of bedrooms and bathrooms, are consistent with previous results. Pa-

rameter estimates on both Riverton (0.150) and Pleasant Valley (0.145) neighborhood dummies

are positive, implying the houses in these two neighbor sold more than houses that are not

in either one, with Riverton commanding a more signi�cant premium compared to Pleasant

Valley. Lower elevation relative to the nearest dam in general decreases a house's sale price.

Moving away from a water body generally drives up a house's sale price, by a magnitude of

0.01% for every 1% increase in distance. This again is consistent with the OLS results, although

the magnitude of the estimated impact here is slightly smaller. The model suggests that in this
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particular area, locations below dams as greater distance from water, are viewed as disamenities.

In contrast to the fully nonparametric model, with the semi-parametric approach the coe�cient

on undevelopable land area in the census block group is positive and signi�cant. This implies

that these rural homeowners, where land is less scarce than in urban areas, prefer open spaces.

Therefore undevelopable land can be viewed as an amenity.

5 Robustness Checks

We consider several robustness checks in our analysis. First, a helpful reviewer pointed out that

there is a 110 acre lot in our sample, and it might be worthwhile to think about dropping that

observation. We considered dropping additional outlier observations, based on the fact that

the mean lot size is 3.2 acres, and the standard deviation is 7.67 acres. Therefore, we expect

approximately 99 percent of the observations to fall within 2 standard deviations of the mean,

or less than 19 acres. This led us to drop the 13 observations that were above 19 acres in a

robustness check. In this truncated sample, the signs and signi�cance of all the variables were

the same with our OLS speci�cation. Therefore, we decided to proceed using the full sample.

A helpful reviewer also suggested we examine whether using the centroid of the property in

the distance and kernel calculations would lead to di�erent results. We found that using the

centroids had no impact on the signs and signi�cance of the results.

We also explored how the presence of water on a property impacted the results. We tried

adding a dummy variable that equals 1 if a property had a water feature on it, and 0 otherwise.

There were only 8 properties that had part or all of a water body on the property, and our

parameter estimate for this coe�cient was negative and insigni�cant, while all the signs and

signi�cance of the other coe�cientes in the model were una�ected. Therefore, we omitted this

dummy variable from our preferred speci�cation.

Another consideration that suggested by a reviewer was to examine sales of developable

land. Unfortunately the town assessor does not have historical data available on developable

land for the time period of our analysis.
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One might wonder why Cohen et al (2015) found that water proximity was an amenity, while

in the present study it is a disamenity. Cohen et al (2015) include several distance variables, but

as noted above, Ross et al (2011) indicate that greater than 2 distance variables in a hedonic

model can lead to inconsistent estimates. Also, in the present study, we have incorporated data

on undevelopable land and relative height of the nearest dam, while Cohen et al (2015) did not

include these variables in their analysis. These issues may explain the discrepancies between

Cohen et al (2015) and our �ndings.

While the concentration of dams across space might be an issue to be considered, the relative

height of a property with respect to the nearest dam is a greater concern. If a property is next

to, and higher than, a cluster of dams, there is no risk of �ooding if the dam were to break.

Therefore, we chose to explore the issue of elevation relative to the nearest dam.

Speyer and Vagas (1991) �nd that using �ood zone dummy varables can lead to biases

because �ood zone data typically encompases broad areas. Therefore the �ood zone dummy

can re�ect other factors besides �ood risk. For this reason, together with the fact that the only

�ood zone data available for Barkhamsted, CT is the Q3 Flood Zone Data from a time period

much earlier than all of the property sales in our sample, we do not consider �ood zone data.

But, we extensively consider how elevation of the closest dam relative to a property's elevation

a�ects sale prices. Our hypothesis is that properties that are lower than the nearest dam sell

for less than those that are higher than the nearest dam.

There are several potential issues related to the impacts of a recession that are worth ad-

dressing. One interesting question to ask regarding the real estate market is how an economic

downturn, like the recession beginning in late 2008, a�ects the housing prices. More speci�cally,

we would like to understand if there is a signi�cant change in how home buyers value amenities

di�erently, before and after the economic downturn in 2008/2009. In Figure 1, the coe�cients

- estimated from the non-parametric LWR model - on variables measuring the distances to

nearest water body, undevelopable land, and the dummy for elevation relative to the nearest

dam, are plotted against the year of sale. These plots suggest that the marginal impact of

closeness to water/dams changed around the time of the recession. Another issue related to the



6 Conclusions 15

recession impacts is contagion. The potential of contagion across properties from the recession

is factored into the kernel weights already, since the LWR approach allows for the possibility

that nearby property sales a�ect the price of a particular property. Contagion across towns

would be interesting to consider, however the data on property sales in neighboring towns are

not ready available to us, and such an analysis is therefore beyond the scope of this particular

study. Real estate taxes after the recession change uniformly across the town over time, so these

are also controlled for in the kernel weights. Also, changes in insurance costs are controlled for

in the post-2008 dummy, since in 2009 there was a sharp increase in insurance costs in general.

Fluctuations in household income and employment are not available to us on a household level.

Finally, one might argue that if some properties were short sales or foreclosure sales, these

properties could have di�erent e�ects than arms-length transactions. We compared the list of

property sales in our dataset with a list of short sales and foreclosures obtained from the town

assessor, and there was no overlap between these two datasets.

6 Conclusions

We estimate a variety of non-parametric and semi-parametric hedonic housing models, and ob-

tain estimates of the e�ects of proximity to water, elevations relative to the nearest dam, and

undevelopable land, on housing prices in a small Connecticut town. We �nd spatial hetero-

geneity in the e�ects of dams proximity on housing prices. Also, property values fell after the

housing crisis that began in 2009 (which occurred simultaneously as increased �ood insurance

rates). Clearly, our semi-parametric and nonparametric empirical approaches generate a much

richer set of results, with more signi�cant parameter estimates, than we have obtained with an

OLS model.

We also incorporate a measure of "undevelopable land" as in Saiz (2010). While the Saiz

(2010) analysis is at the Metropolitan Statistical Area (MSA) level, our undevelopable land

estimates are at the Census block group level due to the fact that we are using transaction-

level observations as opposed to MSA level data. In all of our models, the undevelopable land
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coe�cient is positive and signi�cant which implies open space is an amenity. This result is not

surprising given that we are examining a rural town that is much less densely developed than a

metropolitan area. Clearly, our analysis demonstrates that non-parametric and semi-parametric

analyses have the potential to generate many additional insights about spatial heterogeneity for

hedonic models in the context of properties near water, undevelopable land, and dams.
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A Figures

Figure 1 � Locations of Water Bodies in Barkhamsted, CT
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Figure 2 � Locations of Barkhamsted Single Family Property Sales and Their Elevations,

and Elevations of Dams (N=495, t=2001,2002,. . . ,2015)
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Figure 3: LWR Coe�cients Values Over Time
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