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Abstract: Transportation noise – both air and road – is pervasive in major metropolitan 
areas, and there is heterogeneity in the noise exposure faced by many residents across 
space. High housing prices can impede some residents in moving from louder to less 
noisy areas. This paper relies on Census tract-level road and aviation noise data 
covering the contiguous U.S. for 2016 and 2018, along with American Community 
Survey data, to address whether house prices can be a barrier to avoiding noise for 
residents in some demographic groups. In the first known comprehensive analysis of 
this type combining these datasets over multiple years, we explore which tracts, states 
and demographic groups have residents who experience disproportionate noise. Then, 
we use quantile regressions to demonstrate inter-relationships between house prices 
and demographics, and how these interactions are correlated with noise. We find that 
White and Black residents tend to avoid noise, and this avoidance intensifies with noise. 
The estimates also suggest White populations are better able to avoid noise pollution 
than Black and Hispanic residents, and home values may be an important determinant 
in shaping unequal ability to avoid noise. 
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Introduction 

Documenting disproportionate noise pollution exposure, and considering the 
relationships between such noise, house prices (that is, affordability), and 
demographics, are important issues in U.S. urban areas. Which demographic groups 
bear the most road and aviation noise throughout the U.S., and are lower priced (more 
affordable) houses associated with more noise? These are the two important focus 
questions of this paper that have not been thoroughly examined at the Census tract 
level using comprehensive micro-data for road and aviation noise in the contiguous 
United States.  

Road and aviation noise are pervasive disamenities for those living and working in 
urban areas. Levels of noise are important because excessive noise can have harmful 
effects on health (via sleep disruption and hearing deterioration), as well as on learning 
and household income.1 2 Reducing road traffic through urban areas (Chandioa et al., 
2010) is one potential way to address racial and ethnic disparities in noise pollution 
exposure. However, a thorough understanding of where the noise is, whether it occurs 
in areas with more (or less) affordable house prices, and who bears the greatest burden 
are important first questions to understand before sustainable planning can be 
implemented in a broad sense.  

A large real estate economics literature demonstrating the extent to which noise, 
especially noise stemming from airports, is negatively related to home prices exists 
(e.g., Breidenbach et al., 2022; Cohen et al., 2023). However, little research focuses on 
the questions of how lower-priced homes are correlated with noise and the associated 
demographic distributions of noise burdens. 

Related to the issue of noise levels and willingness to pay for noise avoidance is the 
distribution of noise across groups.  In other words, are White, Black, and Hispanic 
residents subjected to differing degrees? An unequal  distribution of noise raises 
potential environmental justice issues.  According to the U.S. Environmental Protection 
Agency:3 

 
1 Swoboda et al. (2015) identified the following health-related effects: 1) simple annoyance, 2) 
sleep disturbance, 3) increasing risk for stroke, 4) hypertension, 5) myocardial infarction, 6) 
overall quality of life.  For specific references examining these effects, see Cohen et al. (2019).  
With respect to airport noise, Issing and Kruppa (2004) highlight that even while sleeping the 
noise from airplanes may lead to the release of stress hormones that increase the risk of heart 
attacks.  This conclusion is reinforced by Lefѐvre at al. (2017) in their study of aircraft noise in 
France. 

 
2 While the adverse consequences of noise on health have received relatively more attention, 
Trudeau and Guastavino (2021) note that sound can be a restorative resource.  In other words, 
access to a soothing sound environment can produce positive health results.  
3 See https://www.epa.gov/environmentaljustice 

https://www.epa.gov/environmentaljustice


   
 

   
 

“Environmental justice is the fair treatment and meaningful involvement of all people 
regardless of race, color, national origin, or income, with respect to the development, 
implementation, and enforcement of environmental laws, regulations, and policies. 
This goal will be achieved when everyone enjoys: 

• The same degree of protection from environmental and health hazards, and 
• Equal access to the decision-making process to have a healthy environment in 

which to live, learn, and work.” 

 

In the context of the U.S. Department of Transportation (DOT), Order 5610.2(a) requires 
that environmental justice must be considered in all their programs, policies, and 
activities.4  

 
For road and aviation noise, both the levels and distribution of the burden of such noise 
are important considerations.  Noise in the U.S. is measured by most planners in units 
of DNL, which are estimates of the decibels of day-night average sound levels. The 
decibels (dB) scale is logarithmic, which implies the noise level is given as 10^(dB/10).   
Applying this formula, the linear level of noise (relative to 0 dB) is 1.0 for 0 dB. The U.S. 
Federal Register (2000) describes annoyance as the adverse psychological response to 
noise, and notes that 12 percent of people subjected to a DNL of 65 dB report that they 
are “highly annoyed” while 3 percent are “highly annoyed” with DNL of 55 dB. A much 
larger share of individuals (40 percent) are highly annoyed at DNL of 75 dB. The U.S. 
Federal Aviation Administration (FAA) currently uses a cutoff of 65 dB as normally 
“compatible” with residential use (FAA, 2018).   

For levels of noise that pose no threat to sleeping and learning (which in turn, have no 
impact on health or willingness to pay by homeowners to avoid noise), then sustainable 
planning actions to mitigate noise inequality are likely unnecessary. But for excessive 
noise levels, both the levels and distribution of noise across groups pose policy issues.   
 
Our focus is on examining noise levels as well as its distribution across groups.  We use 
noise data at the Census tract level across states in the contiguous United States for 
2016 and 2018.  While this is a brief period of coverage for road and aviation noise, 

 
 
4 See DOT Order 5610.2(a) (Actions to Address Environmental Justice in Minority Populations 
and Low-Income Populations) – 2012.  https://www.transportation.gov/transportation-
policy/environmental-justice/department-transportation-order-
56102a#:~:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20pol
icy%20formulation 

 

https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation


   
 

   
 

setting a baseline for future studies is important. There is also substantial variation over 
space with over 73,000 Census tracts in the continental U.S. for which we have noise 
data in each year.   
 
To address heterogeneity in the relationships between demographics and noise, and 
between house prices and noise, we use a quantile regression approach. This approach 
enables us to discern how the relationships differ for various noise quantiles. We find 
little to no correlation between home values and noise pollution at lower levels of noise 
but a significant negative relationship in the noisiest areas (i.e., 90th percentile or 40 dB 
and above). In other words, greater noise tends to occur in tracts with lower house 
prices for the highest noise quantiles. Also, greater racial and ethnic minority population 
tracts are associated with higher noise levels; and this tends to become more 
pronounced in the higher noise quantiles; especially those with high house prices. One 
interpretation of our findings is that both White and Black residents dislike noise 
pollution and try to avoid this disamentity. However, rising home values are likely a 
barrier to one's ability to avoid noise; and we find this barrier does not equally affect 
White, Black, and Hispanic populations. In locations exposed to significant noise 
pollution at the 95th percentile, for example, a rise in the population share of Black 
residents has a statistically significant association with lower noise when the median 
house price is below $300,000. Above this home-value threshold, the relationship 
becomes statistically insignificant. In contrast, a rise in the population share of White 
residents in the same noisy areas is associated with lower noise when the median 
house price is below $520,000. These results tend to show supporting evidence of an 
environmental injustice with respect to air and road transport-related noise pollution; 
especially in the tracts that are already the noisiest. 
 
The remainder of this paper proceeds as follows. First, we thoroughly survey the 
literature of past research on the related topics of racial and ethnic demographics, 
house prices, and noise. A part of this literature review covers quantile regression, with 
some limited research on noise in the context of a quantile approach. Then we describe 
our data and methods, including a discussion of noise-bearing coefficients and curves in 
the context of our problem. These measures are constructed in a manner similar to Gini 
coefficients and Lorenz curves. We present some summary results of the noise-
inequality coefficients and some examples of the noise-inequality curves (with a set of 
curves for all states in both 2016 and 2018 available in an appendix). Finally, we 
present our quantile regression results. We conclude by summarizing our findings and 
offering some potential housing policy implications of our results. 

 

 

 



   
 

   
 

Literature Review  

Noise and Inequality 

 
The literature focused on the inequality of sound remains rather limited.  A recent review 
by Trudeau and Guastavino (2021) identified 22 studies, the majority of which focused 
on areas not in the United States.  The current review will highlight US studies, some of 
which were not identified by Trudeau and Guastavino, directly related to our study.  
Specifically, we explore the connection between demographic and socioeconomic 
characteristics to noise and noise inequality.  In terms of geography, some are based on 
metropolitan areas, one is based on a state, and others are nationally based. 
 
First, we examine a few studies based on metropolitan areas.  Generally, airport noise is 
stressed.  Four such studies are related directly to the current study – Ogneva-
Himmelberger and Cooperman (2010), Sobotta et al. (2007), Cohen and Coughlin 
(2012), and Nega et al. (2013). 
 
Ogneva-Himmelberger and Cooperman (2010), using Boston's Logan International 
Airport, find that minority and lower-income populations are subjected to relatively 
higher noise levels than their counterparts.  Sobotta et al. (2007) regress airport noise in 
Phoenix, expressed as a qualitative dependent variable, on various independent 
variables, including the percentage of neighborhood population that is Hispanic.  They 
find that households in neighborhoods with a greater Hispanic population were 
subjected to higher noise levels than households in other neighborhoods. 
 
Following techniques in McMillen and McDonald (2004), Cohen and Coughlin (2012) 
estimate ordered probit locally weighted regressions (OPLWR) to explore the issue of 
spatial heterogeneity in the context of the determinants of airport noise in Atlanta.  
Cohen and Coughlin (2012) find notable differences in parameter estimates for different 
houses in their sample with the OPLWR estimates. In particular, the sign on the 
coefficient for each explanatory variable contains some positive and some negative 
values. Also, compared to an ordered probit model, the mean of the magnitudes of the 
coefficients for some of the other explanatory variables is larger with the OPLWR model, 
while for other coefficients the mean is smaller.  These differences between the OPLWR 
and ordered probit results imply that focusing exclusively on an ordered probit model for 
the determinants of noise can lead to biased estimates in our context due to ignored 
heterogeneity among individual houses in our sample. Overall, the heterogeneity over 
the relatively small area examined precluded any environmental-justice generalizations 
with respect to either the black or Hispanic populations. 
  
The fourth metropolitan-based study is focused on the Twin Cities.  Nega et al. (2013) 
uses spatial econometric techniques to examine median noise levels in block groups.  



   
 

   
 

Controlling for spatial autocorrelation, they found noise as related to a number of 
demographic and socioeconomic variables.  Specifically, higher levels of noise were 
related to lower levels of household income, lower levels of home values, higher 
percentage levels of non-white population, and lower percentage levels of population 
less than 18 years old. 
 
Moving to a larger geography, prior work has developed a measure of noise inequality 
for the state of Georgia and its metropolitan areas (Cohen et al., 2019). Cohen et al. 
(2019) use various indicators to examine the relative noise burdens from road and air 
traffic noise of Whites, Blacks, and Hispanics in Georgia, both state-wide and by 
metropolitan area.  They found that Whites bear disproportionately less noise than 
either Blacks and Hispanics and that Blacks tend to experience relatively more traffic 
noise than Hispanics.  Especially noteworthy is that in areas where there is increased 
likelihood of health-damaging noise Blacks and Hispanics bear disproportionately larger 
shares of noise.  However, exceptions to these general findings were also found.  In 
some Census tracts, roughly one in twenty for Blacks and one in five for Hispanics, 
larger Black and Hispanics population shares are associated with relatively less noise. 
In the present paper, we apply the Cohen et al. (2019) methodology to tracts in 48 U.S. 
states plus the District of Columbia, for the years 2016 and 2018, in generating noise-
inequality curves and coefficients that are similar, but not identical, to Lorenz curves and 
Gini coefficients. 

 
Last, similar to the current study, Casey et al (2017) and Collins et al. (2020) are nation-
wide studies.  Using noise estimates in census block groups, Casey et al. (2017) found 
that nighttime and daytime noise levels were higher in block groups containing higher 
proportions of non-white and lower socioeconomic status residents.  Moreover, block 
groups in more highly segregated metropolitan areas faced higher estimated noise 
exposure. Similarly, Collins et al. (2020) found higher noise exposure in census tracts 
characterized by lower socioeconomic status and greater proportions of Blacks, 
Hispanic, Asian, Pacific Islander, and middle/working-aged residents. 
 

Quantile Regressions in Housing Research 

 
Given the large degree of heterogeneity in noise exposure throughout the U.S., with 
some urban areas having noise levels that are close to uninhabitable but rural areas 
with virtually no noise, it is desirable to use an econometric approach that can allow for 
heterogeneous effects. Methodologically, we employ quantile regressions to investigate 
differences in exposure to noise pollution across varying levels of this disamenity. In 
general, the linear quantile regression model can be written as follows: 
 

𝑦𝑦 = 𝑋𝑋𝜆𝜆𝑞𝑞 + 𝜖𝜖𝑞𝑞 



   
 

   
 

Where 
 

 
 

Here, 𝑝𝑝𝑞𝑞(. )  represents the tilted absolute value function. The solution to this 
minimization problem yields a vector of marginal effects of X on y for each quantile (q).5 
𝜆𝜆0.5 , for example, represents the correlation of X and y at its median, whereas 𝜆𝜆0.1 
measures the correlation at the 10th percentile of y. 
  
Quantile regressions have a long-standing history in the econometric literature6 and 
have been applied extensively in the context of real estate and spatial economics 
(Coulson and McMillen, 2007; Liao and Wang, 2012; McMillen, 2015)7 as well as air 
and transport-related noise pollution (Tonne et al., 2018).  McMillen (2008), for example, 
studies changes in the house price distribution in Chicago between 1995 and 2005. 
Using a quantile regression, McMillen (2008) shows that the distributional shift leading 
to a larger right-tail in the distribution cannot be explained by location or other home 
characteristics. Instead, the distributional shift is caused by systematic variations in 
appreciation rates across lower to higher valued properties that lead to faster housing 
wealth accumulation to owners of high-priced homes. 
  
Zietz et al. (2008) apply a quantile regression to consider the market segmentation and 
variation in the valuation of housing attributes across the conditional property price 
distribution in Orem/Provo, Utah. In this context the authors find evidence of significant 
systematic variation in the implicit prices of house attributes across low- to high-value 
homes. The impact of an additional square foot of living space, for example, is much 
larger for already higher-valued homes than for lower-price houses. Further, the authors 
conclude that the quantile effects dominate the spatial autocorrelations effects. 
  
A more recent application of quantile regressions in the context of house sale prices 
was done by Waltl (2019) who studies variations in appreciation rates across price 

 
5 For further technical details see Koenker and Bassett (1978). 

 
6 The methodology was first introduced by Koenker and Bassett (1978). Early influential 
applications include the work by Chamberlain (1994) or Buchinsky (1994). Koenker and Hallock 
(2001) provide an excellent overview of the methodology and applications in various contexts. 

 
7 For an excellent introduction to quantile regression and its application to spatial data see 
McMillen (2012). 

 



   
 

   
 

segments and locations in Sydney, Australia. Similar to the previous work, the author 
finds significant differences in appreciation rates across submarkets and that boom-and-
bust cycles are primarily driven by price developments in suburban low-priced houses. 
Tonne et al. (2018) apply quantile regressions in the context of rail and aircraft noise 
pollution in London, England. The authors focus on a sample of residents exposed to 
noise pollution above 50dB. In general, they find that the direction of inequalities in 
noise exposures was highly variable with respect to sociodemographic characteristics 
and the type of noise. For example, the authors find little evidence of variations in 
exposure to road noise across income groups below the 75th exposure quantile. Above 
this threshold, however, the authors provide some evidence to suggest that households 
with higher income are less exposed to the most significant levels of noise pollution. 
Moreover, Asian participants appeared to be more exposed to road traffic noise, while 
white individuals with high household income were more likely exposed to aircraft noise. 
  
As suggested by the findings in Tonne et al. (2018), the relationship of inequality in 
exposure to noise pollution is very complex and non-linear. Quantile regression analysis 
provides a framework to tease out these non-linearities across the entire noise pollution 
distribution. Similar to Tonne et al. (2018), we apply this methodology to study the 
inequality-in-noise-pollution-exposure relationship but broaden the study area to the 
entire continental U.S. over a two-year sample.  

 
Data and Analytical Methods 
  

Before exploring the complexities of the noise-ethnicity-house-price relationship via 
quantile regressions, we provide a summary measure of the noise borne by one group 
relative to other groups as well as to the national average. To this end, we use noise-
inequality coefficients and curves. These coefficients and curves are constructed in a 
manner analogous to Gini coefficients and Lorenz curves. These coefficients and curves 
were used previously in Cohen et al. (2019), although focused on a much narrower 
geographic area (the state of Georgia) and only for one year of data. As such, these 
constructs provide numerical and visual indicators of noise inequality.   

On the horizonal axis is a measure of noise that orders census tracts in percentiles from 
the one with the most noise to the census tract with the least noise.  On the vertical axis 
is the cumulative percentage of the relevant population.  The reference line uses the 
entire population of the census tracts under consideration. Similar to the construction of 
a Lorenz curve in the context of income inequality, this 45-degree line indicates noise 
equality.  Figure 1 illustrates a specific situation with a noise-bearing curve. 

 

 

 



   
 

   
 

Figure 1 – Noise-Inequality Curve: Less-than-Proportionate  

  

  
In this figure the noise-inequality curve for a specific group lies below the reference line.  
At the lowest noise percentiles the noise borne by this group is less than that borne by 
the population. Let A be the area between the noise-bearing curve and the reference 
line and B be the area below the noise-bearing curve.  The noise-bearing coefficient is 
defined as follows: NBC = A/(A + B).  In the limiting cases, a coefficient of 1 indicates 
this group bears no noise, while a coefficient of 0 indicates the group bears noise 
proportionate to its size.  Thus, the coefficient must lie between 0 and 1.  In this 
illustration, the specific group bears a less-than-proportionate share of the noise. If A 
were to shrink, then noise inequality declines. 

Now, as represented in Figure 2, consider the case where the noise-bearing curve lies 
above the reference line. Thus, A is the area above the reference curve and B is the 
entire area below the reference line.  In this case, the noise-inquality coefficient is 
defined as follows: NBC = -A/B.  In the limiting cases, a coefficient of -1 indicates that 
the specific group bears all the noise, while a coefficient of 0 indicates that the specific 
group bears noise proportionate to its size.  Thus, in this case the coefficient must lie 
between 0 and -1. The group bears a more-than-proportionate share of the noise.  If A 
were to shrink, then noise inequality declines. 

 

 



   
 

   
 

Figure 2 – Noise-Inequality Curve: More-than-Proportionate 

  

  

In summary, the noise-inequality coefficient for a specific group may range from -1 to 
+1.8 Values near -1 indicate that the group bears a very large share of noise, while 
values near +1 indicate that the group bears a very small share of noise.  Values near 0 
indicate that the group bears a roughly proportionate noise share (i.e., equality).  

 

Data 

 
To investigate the relationship between exposure to transport-related noise pollution and 
home values as well as ethnicity we construct a novel dataset that combines information 
on 2016 and 2018 air and road noise pollution published by the U.S. Department of 
Transportation’s Bureau of Transportation Statistics with Census tract data on local 
housing markets and socioeconomic characteristics of local residents. The latter data 
are sourced from the American Community Survey (ACS) published by the US Census 

 
8 It is also possible that there can be times when A does not lie completely above or below the 
reference line.  The calculation of the numerator is a net of the positive “A” area beneath the line 
and the negative “A” area above the line. Meanwhile, the denominator is the area beneath the 
reference line.   



   
 

   
 

Bureau. Noise pollution statistics are available for 2016 and 2018 and are linked to the 
ACS data for those years with a spatial join, leading to separate tract-level noise and 
demographics estimates for over 70,000 tracts in each of the 2 years.  
 
Figure 3: Air & Road Noise Quantiles 

 

 
Figure 3 summarizes the distribution of air and road noise across the contiguous United 
States. The data reveal that the vast majority of census tracts experience very little 
transport-related noise pollution. More specifically, 90 percent of US census tracts are 
subject to approximately 40 dB LAeq or less average daily noise pollution. Above this 
threshold noise ranges widely. While a census tract at the 90th percentile of noise 
experiences 40 dB LAeq, the noisiest locations are subject to more than 75 dB LAeq in 
at least one of the two sample years. 
 
For several of these heavily noise polluted locations, including the five noisiest tracts 
with an average 70 dB LAeq or above, the Census data indicate no population. Table 1 
lists the top 30 census tracts (and associated states and counties) with the highest 
levels of noise pollution averaged across the two years conditional on people living in 
these tracts. The most noise-polluted census tracts where people actually live tend to 
be located in the states of Texas, New York, and California. But the list also includes 
census tracts located in Florida, Georgia, Illinois, Mississippi, Missouri, Nevada, New 
Jersey, Tennessee, Virginia, and Washington. Interestingly, aircraft noise appears to be 
the primary source of noise pollution in these highly polluted census tracts. Road noise 
tends to be a lesser contributing factor (even if we do not condition on positive 
population). But road noise tends to be more constant over time, while aircraft noise is 



   
 

   
 

much more intense for very brief periods and then there is typically much less noise in 
between flyovers. 
 
More specifically, San Diego County, CA, Bronx County, NY and Queens County, NY all 
have tract(s) with at least 50 dB LAeq9 in both road noise and air noise. The tract in San 
Diego has a black population share of less than 5 percent and Hispanic population 
share of 14 percent. In contrast, the tract in the Bronx County has 21 percent Black 
population and 54 percent Hispanic population, while the tract in Queens County has 
nearly 13 percent black and 14 percent Hispanic residents. It is also noteworthy that in 
some instances, the numbers for the individual race/ethnicity breakdowns do not add to 
100 percent. This is because there are other race/ethnicity categories (such as Asian 
and Native American and others) that are not included in this table, for ease of 
presentation. Moreover, some Hispanic residents also identify as White, so there is 
some overlap between the numbers across categories. 
 
Table 1 also shows that population, density, income, and home values, as well as 
population shares of Black, Hispanic/Latino, and White ethnicities vary greatly across 
these highly noise-polluted locations. While some census tracts have just 5 residents, 
others are heavily populated with over 5,000 residents. Similarly, the median family 
income ranges from around $25,000/year to over $100,000/year, whereas median home 
values range from just under $35,000 per home to over $800,000 per home. Moreover, 
these most heavily noise-polluted census tracts have diverse populations. The White 
population share, for example, ranges from 0% to 100%. Similarly, the Black population 
share in these locations varies from 0% to 95%.  

 

 

 

 

 

 

 

 
 

9 According to the BTS, the na�onal transporta�on noise map is developed using a 24-hr equivalent A-
weighted sound level noise metric denoted by LAeq. As such, the noise metric represent the 
approximate average noise energy due to transporta�on noise sources over a 24-hour period at the 
receptor loca�ons where noise is computed. htps://rosap.ntl.bts.gov/view/dot/53773 

 

https://rosap.ntl.bts.gov/view/dot/53773


   
 

   
 

 

Table 1: Top 30 Census Tracts with Highest Noise Pollution 
s

 

Figures 4a through 4d shed more light on some of these noise pollution correlations. 
Based on the full sample, Figure 3a, for example, plots the combined air and road 
noise, measured in dB LAeq, against census-tract median home values. As expected, 
the graph shows a large mass of census tracts with median home values below 
$500,000 with noise pollution ranging from 0 to over 60dB LAeq. Interestingly a 
quadratic fit shows a non-linear, “inverse U” relationship between home values and local 
noise pollution. The graph shows that neighborhoods with low noise pollution can be 
associated with lower valued homes or the highest value homes. The tipping point is 
centered around a median value of $1,000,000 per home. Transport-related noise is, of 
course, linked to human activity. On the one end, low noise pollution may be indicative 
of an area with little human and economic activity and therefore little housing demand 
resulting in lower priced homes. As this activity increases, so do home values. However, 
there is a tipping point after which low noise in high activity areas becomes a desired 
amenity that commands a house sale price premium helping explain the fact that more 
of the highest value properties tend to be located in the quietest census tracts. 

 
 



   
 

   
 

Figure 4a: Air & Road Noise – Home Value Correlation 

 

 

Figures 4b through 4d plot the combined air and road noise pollution experienced in 
each census tract against the local white, black, and Hispanic/Latinx population shares. 
The fitted quadratic curves reveal a few interesting patterns. First, each plot reveals an 
“inverse U” shaped relationship suggesting that quieter neighborhoods are also home to 
less diverse populations. This relationship is most pronounced for the Hispanic/Latino  
and the White populations compared with the Black populations. Second, 
neighborhoods with larger shares of white residents experience less noise pollution on 
average. In contrast, neighborhoods with larger shares of Black residents do not see a 
pronounced decline in typical noise pollution. 

Overall, these figures provide some initial insight into the complexities of the 
relationships between transport-related noise pollution and local housing market or 
socioeconomic characteristics. The 95 percent confidence intervals are highlighted in 
yellow. These confidence intervals are very narrow in some parts of the curves, which is 
why it appears as if there is no confidence interval in those areas.  

 

 

Figure 4b: Air & Road Noise – White Population Share Correlation 



   
 

   
 

 

Figure 4c: Air & Road Noise – Black Population Share Correlation 

 

 

 

 

 



   
 

   
 

Figure 4d: Air & Road Noise – Hispanic/Latino Population Share Correlation 

 

Results- Noise-Inequality Curves and Coefficients  

Noise-inequality coefficient maps and curves 

 

Figures 5a and 5b below are graphical depictions of the noise inequality curves for 2016 
and 2018, respectively, at a national level of aggregation. These figures are broken out 
by the total population, White population, Black population, and Hispanic population. 
The curves for the Black population and the Hispanic population do not appear to be 
dramatically different in the two years. But the curve for the White population seems to 
be closer to the total population in 2018 than in 2016, implying the less than 
proportionate White population exposure in 2018 is less pronounced than in 2016.    

 

 

 

 

 

 



   
 

   
 

Figure 5a – 2016 National Noise Inequality Curve, by Race/Ethnicity 

 

Figure 5b – 2018 National Noise Inequality Curve, by Race/Ethnicity 

 

 



   
 

   
 

While the national noise inequality estimates show greater than proportionate exposure 
for the Black and Hispanic populations, it would be of interest to observe the extent to 
which this inequality holds up at the sub-national levels. We calculated the noise-
inequality coefficients on an average basis, state-by-state, to obtain a sense of which 
demographic groups experience a more/less equal distribution of noise within each of 
the states. Figures 6a and 6b show the average noise-inequality coefficients for each 
demographic group (White, Black, and Hispanic residents), in each year (2016 and 
2018), respectively.  

Figure 6a: 2016 Noise-Inequality Coefficients, by State 

 

Figure 6b: 2018 Noise-Inequality Coefficients, by State 

 

Note: South Dakota (SD) is missing data from 2018 (in Figure 7b). 



   
 

   
 

 

To determine the overall (U.S.-wide) noise exposure for each of the 3 groups, we 
calculate that New York has the highest overall average noise exposure (averaged over 
the two years, 2016 and 2018), while West Virginia is the quietest state. The most 
unequal state for noise exposure by Black residents is Missouri, while the 
corresponding most unequal state for Hispanic/Latinx residents is New Hampshire, with 
Rhode Island and Connecticut close behind. 10  

A full set of noise inequality curves at the state-level, annually in 2016 and 2018, is 
available in an appendix. 

Results – Econometrics 

Given the flexibility of quantile regressions in understanding heterogeneity in the data, 
and the lack of other studies that have already used these approaches to consider the 
same dataset as ours, we focus on quantile regressions for our regression analysis. 
Using quantile regressions enables us to uncover heterogeneity that is not apparent 
with OLS. 

In general, the quantile regression results, discussed below, provide evidence of 
systematic variation in the exposure to transport-related noise pollution across Black, 
Hispanic, and White populations. These relationships are found to be negative and 
statistically significant among higher White and higher Black populations, for most 
quantiles, while they are positive and statistically significant among higher shares of 
Hispanic populations for most quantiles. While the positive sign on the Hispanic 
coefficient implies tracts with higher Hispanic population are associated with greater 
noise, the negative sign on the Black population coefficient implies the opposite 
relationship, which is somewhat unexpected a priori. 

We present our quantile regression findings for two distinct models. In the first we 
regress the combined air and road noise pollution on census-tract-level house prices, 
population shares by ethnicity (including white, black, and Hispanic), and a number of 
control variables including: 1) additional socioeconomic factors (i.e., total population, 
median family income, age, family size and educational attainment); and 2) housing 
market characteristics (i.e., median rent, renter occupation rates, share of multi-unit 
housing, population share of recent movers, and the number of two- to five-or-more-
bedroom homes).  

In the second model, we further explore the complexities of the relationship between 
noise exposure and ethnicity given the interplay with house prices. Specifically, we 
integrate interaction terms between White, Black, and Hispanic population shares and 

 
10 While at first glance there appears to be some discrepancies between Table 1 and Figures 7a and 7b, the 
es�mates in Table 1 are at the census tract level, while Figures 7a and 7b show the noise inequality coefficients 
aggregated for en�re U.S. states. 



   
 

   
 

local house prices. We continue to control for the aforementioned socioeconomic and 
housing market characteristics in this interaction model. 

We estimate both models across the 5th to the 95th noise quantile and present our 
findings in numerous coefficient plots.11 Each of these graphs depicts the parameter 
estimate function (black line) as well as the associated 95 percent confidence interval 
(CI), which are based on bootstrapped standard errors clustered at the state level. Here 
we differentiate between the pointwise CI (dark grey shaded area) and the functional CI 
(light gray shaded area). Pointwise CIs are used to describe the range of values that will 
cover the true parameter for a single estimate with the pre-specified coverage 
probability (i.e., 95 percent). Applications include, for example, Ordinary Least Squares 
(OLS) regressions, which produce a single parameter estimate representing the 
average effect/association between the dependent (Y) and independent variable (X). In 
contrast, quantile regression produces a function of parameter estimates describing the 
relationship between Y and X over the distribution of Y. Functional CIs are the analog to 
pointwise CIs in the quantile regression context and have been derived by 
Chernozhukov et al. (2013) and implemented in STATA by Chernozhukov et al. 
(forthcoming).  

Although the empirical findings provide rich insights into the noise-ethnicity-house-price 
relationships, we are careful not to mistake correlation for causation throughout the 
discussion that follows. Figures 7 and A1a through A1d illustrate the quantile regression 
parameter estimates for model one (no interaction). The parameter function estimates 
of interest involve the relationships between noise pollution and house prices as well as 
White, Black, and Hispanic population shares. The results shown in Figure 6 are 
striking. Home values are found to have little to no statistically or economically 
significant association with noise pollution below the 90th percentile of noise. For the 
noisiest 5 percent of census tracts in the sample, however, the estimates point to a 
significant negative relationship between noise pollution and house prices that 
intensifies quickly as noise rises. This finding is, of course, in agreement with much of 
the real estate literature that has produced convincing evidence of significant price 
discounts resulting from transport-related noise pollution (Friedt and Cohen, 2021; 
Cohen and Coughlin, 2008). 

 
 

 

 

 

 
11 This is common prac�ce in the quan�le regression literature. The es�ma�on at each of the 91 quan�les produces 
91 coefficient es�mates for each of the independent variables. These are most efficiently summarized in coefficient 
plots. 



   
 

   
 

Figure 7– Quantile Regression Coefficients (Model 1: No Interaction) 

 

Although house prices exhibit no statistically significant relationship with transport-
related noise in less polluted areas, variation in the ethnic population shares appears 
non-random across the entire distribution of noise pollution. White population shares, for 
example, are found to have a negative relationship with transport noise; and this inverse 
relation tends to intensify until around the 90th noise quantile when the relationship 
starts to attenuate towards zero. Overall, this finding agrees with our noise-bearing 
curves and coefficients for White populations. One way to interpret this finding is that 
White residents successfully manage to avoid exposure to noise pollution at any level of 
this disamenity and that this behavior tends to escalate as noise intensifies.  

Black population shares also exhibit a negative correlation with noise pollution. 
However, the point estimates tend to be smaller in absolute magnitude (relative to 
coefficients for White population shares) and statistically insignificant at the 95 percent 
threshold. Potential explanations of these estimates include a lesser ability and/or 
desire to avoid transport-related noise pollution.  

Of course, if transport-related noise pollution is a meaningful disamenity, abatement or 
avoidance is costly. And, similar to the desire to avoid exposure to noise pollution, this 
avoidance cost may be rising with greater levels of noise. This, perhaps, explains the 



   
 

   
 

change in coefficient estimates towards the highest levels of noise in the estimation 
sample (i.e., 90th-95th percentile). 

The coefficient estimates on Hispanic/Latinx population shares tell a very different story. 
Across all levels of noise pollution, we find a positive relationship between noise and 
Hispanic/Latinx population shares; and this relationship also intensifies at greater levels 
of noise. One potential interpretation is that, in contrast to White and Black populations, 
Hispanic/Latinx residents appear unsuccessful in avoiding transport-related noise 
pollution.  

Parameter estimates for the control variables are presented in Figures A1a through A1d 
and demonstrate several statistically and economically significant relationships. For 
example, as one might expect we find a negative association between noise pollution 
and the total population. In contrast the association between family size and noise 
pollution is positive and tends to increase at greater levels of noise. Interestingly, the 
estimates also show a strongly positive and intensifying relationship between noise 
pollution and rent as well as the share of multi-unit homes.    

Finally, Table 3 presents the Kolmogov-Smirnov (K-S) and Cramer-von-Mises (C-M) 
type tests across five functional null hypotheses of interest ranging from no effect to a 
positive or negative effect, to a constant or location-scale shift effect. Rather than 
separately test the coefficients estimates at each of the 91 noise quantiles, which would 
suffer from a multiple testing problem, we employ the K-S and C-M type tests which 
consider all of the quantile regressions simultaneously to detect a systematic violation of 
any of the five null hypotheses (see Kroenker and Xiao, 2002 and Chernozhukov et al., 
forthcoming). 
 

  



   
 

   
 

Table 3 – Quantile Regression Hypothesis Tests (Model 1: No Interaction) 

Table 3 reports the p-values across both types of tests across all five hypotheses for 
each of the parameter estimates. In general, the C-M tests tend to be more 
conservative than the K-S tests and the results further support the aforementioned 
patterns seen in Figure 6. There is only marginal evidence to suggest a statistically 
significant, non-positive noise-house-price relationship across the 5th to 95th noise 
quantiles. In contrast, the tests strongly reject all but one hypothesis regarding the 
estimated noise-ethnicity relationships. White, Black, and Hispanic population shares 
exhibit statistically significant and non-constant relationships with transport-related noise 
pollution. While White and Black population shares are inversely related to noise, 
Hispanic population shares are positively related to the same noise pollution. 

Interaction Effects 

One other important consideration, however, is that of the dynamics between race, 
ethnicity, and house prices. It is our hypothesis that the relationships between White, 
Black, and Hispanic populations and noise exposure are different in tracts with higher 
average house prices than in tracts with lower average house prices. To allow for this 
possibility, we include interaction terms between housing prices and each of the 
race/ethnicity percentage variables.  

Figures 8a, 8b, and 8c depict the parameter function estimates for the White, Black, and 
Hispanic population shares and their interactions with home values, respectively. Across 
all three ethnicities, we observe a relative stagnant and economically and/or statistically 
insignificant relationship between population shares and noise pollution when this 
disamenity is roughly below the 80th quantile.  



   
 

   
 

Figure 8a – Quantile Regression Coefficients – White (Model 2: With Interaction) 

 

 

Figure 8b – Quantile Regression Coefficients – Black (Model 2: With Interaction) 

 



   
 

   
 

Figure 8c – Quantile Regression Coefficients – Hispanic/Latinx (Model 2:  with 
Interaction) 

 

Above this threshold, however, residential behavior changes. The White and Black 
coefficients (left-hand plots in Figures 8a and 8b) are negative, whereas the interaction 
term coefficients are positive (right panels in Figures 8a, 8b). This relationship is more 
pronounced and statistically significant for White relative to Black residents.  The 
marginal effects imply that in neighborhoods with below average house prices, White 
and Black residents appear to be able to avoid noise exposure in these very noisy areas 
(95th noise quantile). In other words, when barriers to relocate (i.e., low house prices) to 
quieter neighborhoods are low, White and Black residents successfully manage to 
reduce their exposure to transport-related noise pollution and reside in quieter areas. In 
contrast, in the left panel of Figure 8c, Hispanic population shares are positively related 
with noise pollution above the 80th noise quantile when house prices are low. It seems 
more difficult for Hispanic residents to relocate and avoid noise in a similar manner as 
the Black and White populations tend to do, on average. 

Interaction term estimates reveal rising house prices offset this avoidance behavior for 
White and Black populations (the right panels in Figures 8a, 8b, and 8c). One possible 
interpretation is that rising home values may become a barrier to noise avoidance for 
White and Black residents and thereby also mitigate noise exposure for Hispanic 
populations. In other words, when barriers to relocate (i.e., high house prices) to quieter 
areas in a given neighborhood are high, more White and Black residents tend to locate 
in the more noise polluted areas, and are therefore more exposed to transport noise.  



   
 

   
 

Table 4 reports the p-values across the K-S and C-M tests for the parameter function 
estimates of interest. Across most coefficient estimates the hypothesis of a null and/or 
constant effect is strongly rejected. 

Table 4 – Quantile Regression Hypothesis Tests (Model 2: With Interaction) 

 
We further investigate the thresholds at which house prices become prohibitively high 
for White and Black residents to avoid transport-related noise pollution by deriving the 
marginal effects for each population group at the 95th quantile of air and road noise. The 
results are shown in Figures 9a, 9b, and 9c. In each figure, the solid blue curves 
represent the marginal noise-ethnicity relationship over house prices ranging from $0 to 
$2 million. Grey shaded areas represent the 95th percent CI based on the delta method.  

Figure 9a – Marginal Effects – White 

 

 



   
 

   
 

Figure 9b – Marginal Effects – Black 

 
Figure 9c – Marginal Effects – Hispanic/Latinx 

 



   
 

   
 

The most striking result is that the house price thresholds for a null effect varies across 
the White and Black populations. Figure 9a illustrates that the marginal relationship 
between noise pollution and White population shares becomes statistically insignificant 
at a typical house price of around $520,000. The point estimate is 0 at a typical house 
price of $820,000.  

In contrast, Figure 9b shows that the marginal relationship between noise pollution and 
Black population shares becomes statistically insignificant at a typical house price of 
around $300,000. And the point estimate is 0 at a typical house price of $670,000. 
These thresholds for Black residents are much lower than those observed for White 
residents and perhaps explain the more pronounced avoidance behavior of White 
population shares found in the estimation without interaction terms. More importantly 
though, one way to interpret these findings is that home values represent a barrier to 
one’s ability to avoid transport-related noise pollution, but that these barriers are 
unequal across White and Black residents.  

Conclusion 

In sum, exposure to noise pollution may be a source of racial and demographic 
inequality rooted in income and wealth. A potential mechanism of the apparent 
inequality may be the varying affordability of homes in quieter neighborhoods. In past 
studies, noise has been associated with lower property values and poor health 
outcomes. Less research has demonstrated the heterogeneity in how noise is 
correlated with house prices, average demographics of the neighborhoods, and their 
interactions. Differences between road noise and aircraft noise are also important to 
consider, given that aircraft noise is very intense for a short amount of time, while road 
noise is more consistent but typically at a lower intensity. 

In this paper, we have tackled these issues using a relatively new dataset with multiple 
years of observations on noise levels for the entire U.S., which also breaks down the 
noise levels into separate estimates for aircraft opposed to road noise. We merge the 
noise data, at the Census tract level, with demographics and house prices data at the 
Census tract level, for the years 2016 and 2018. We present the data in multiple 
dimensions.  

Specifically, we apply a set of noise-inequality curves and coefficients, which are based 
on the approach of Cohen et al. (2019). This enables us to demonstrate how the 
average burden of noise falls unequally in some locations (that is, U.S. states) but more 
equitably in others. We present graphs, tables, and maps of these noise inequality 
estimates. Maine, Missouri, Oregon, Vermont, and Pennsylvania are among the states 
with the greatest degree of inequality among Black residents. This inequality becomes 
worse for some states (e.g., Maine) in 2018 compared with 2016.  

We also use quantile regressions to demonstrate the heterogeneity in the correlations 
between noise and house prices, broken out for various demographic groups. This 



   
 

   
 

enables us to estimate the abilities of the members of these groups to avoid noise by 
moving to different neighborhoods where noise may be less pervasive.   

Our results suggest that when house prices are low (below national average), both the 
Black and White populations may successfully avoid noise pollution at any level of this 
negative externality. However, when in neighborhoods where house prices are high 
(above the national average), greater shares of Black residents are exposed to greater 
levels of noise pollution. 

These results may be interpreted as evidence of racial and ethnic inequality, if one 
accepts the hypotheses that: 1) increases in noise pollution represent a significant dis-
amenity in already noisy neighborhoods (i.e., those above the tipping point); and 2) 
increase in transport-related noise indicate better accessibility in the least noisy census 
tracts (i.e., those below the tipping point). In the first case, on average, the White 
population seems to be systematically sorting into the quietest neighborhoods within the 
census tracts with highest average house prices that tend to be most heavily affected by 
transport-noise pollution. The ability of White residents to better avoid transport-related 
noise pollution than Black and Hispanic residents in the most "expensive” areas, leads 
to significant inequality across these populations in terms of their exposure to transport-
related noise pollution. In the second case, in quieter and perhaps more rural areas, 
some of which have lower average house prices, White and Black populations are able 
to sort towards areas with greater accessibility, which is captured by increases in 
transport-related noise. However, the inequality remains due to the inability of Hispanic 
residents to successfully sort in the same manner as White and Black residents. 
The fact that these inequality patterns arise, even when controlling for local income and 
house prices, suggests that there are other mechanisms at play that may induce such 
sorting. Possible explanations may include hysteresis arising from historically 
discriminatory land use policies or transport infrastructure investments, among others. 
Another explanation may be based on the theory of market segmentation in the sense 
that Black and Hispanic populations hold lower implicit prices for noise pollution than 
White populations. Another possible explanation is discriminatory zoning, as in a paper 
by Schertzer et al. (2016) on race, ethnicity, and discriminatory zoning. They find 
evidence that “exclusionary zoning” in Chicago, IL was predated by industrial zoning 
that was focused primarily on higher black and Hispanic population neighborhoods. If 
similar patterns exist throughout the U.S., it is possible that highway construction (which 
cuts through major U.S. population centers that had predominantly high numbers of 
racial and ethnic minorities, as in Cohen et al., 2022), continued to exhibit high degrees 
of noise moving forward and are associated with lower house prices. In this respect, it 
may be a challenge to identify a causal effect between minority population and noise 
levels, or between housing prices and noise levels, when relying on contemporary data, 
but the correlations are of interest.  

Overall, the identification of and delineation across these mechanisms is beyond the 
scope of this paper, but an interesting and important topic for future research. 
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Table A1: State-level ranking of Air & Road Noise Pollution and Inequality in Noise Pollution Exposure, 
Averaged over 2016 and 2018 Noise Values

 

 



   
 

   
 

Figure A1a – Quantile Regression Coefficients – Socioeconomic Characteristics (No 
Interaction) 

 

  



   
 

   
 

Figure A1b – Quantile Regression Coefficients – Housing Market Characteristics (No 
Interaction) 

 

  



   
 

   
 

Figure A1c – Quantile Regression Coefficients – House Characteristics (No Interaction) 

 

Figure A1d – Quantile Regression Coefficients – Education & Year FE (No Interaction) 

 


