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Abstract:  This paper uses a Markov-switching approach to examine why there is house price 
cycle comovement across some U.S. metropolitan areas (MSAs) but not others, and which MSAs 
cluster together for each of these reasons. Past studies have attributed common housing 
downturns in different regions as possible explanations for comovement. We explore other 
channels, and find some clusters based on common industry concentration (such as information 
technology), house price elasticity, as well as a cluster of MSAs that are desirable for retirees (in 
the sun belt). We find seven clusters of MSAs, where each cluster experiences idiosyncratic 
house price downturns, plus one distinct national house price cycle. Notably, only the housing 
downturn associated with the Great Recession spread across all the MSAs in our sample; all 
other house price downturns remained contained to a single cluster. We also identify MSA 
economic and geographic characteristics that correlate with housing price cluster membership, 
which implies comovement due to mobility of residents.  In addition, while prior research has 
found housing and business cycles to be related closely at the national level, we find very 
different house price comovement and employment comovement across clusters and across 
MSAs. 
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1. Introduction 

The comovement of house prices has been extensively studied in the housing literature to 
understand the factors behind simultaneous price movements in different groups of cities, even 
when cities may be geographically distant. Understanding why house price movements exhibit 
such comovement is crucial, as it has significant implications for policymaking and investor 
portfolios. Policymakers rely on a deep understanding of these movements to design effective 
policies that promote housing market stability, economic growth, and social welfare. Investors 
utilize insights into house price trends to make informed decisions about their investment 
portfolios, manage risk, and assess potential returns. 

Previous studies have identified several mechanisms that contribute to house price comovement, 
including weather, climate, and available land. Some house price cycle comovement may be a 
result of recessions in some locations causing recessions in another region, which then may lead 
to lower house price growth in that other region. Regional “clusters” in some industries may 
contribute to regional housing market cycles.1  Conversely, better overall health of an MSA’s 
economy can lead to improvements in other MSAs’ economic vitality, which indirectly impacts 
other MSAs’ housing markets. Moreover, there can be other more direct mechanisms that lead to 
clustering across MSAs. For instance, higher house prices in some MSAs can lead residents to 
search for more affordable housing in nearby MSAs, leading to a direct house price growth 
impact in other MSAs. Alternatively, there can be cross-MSA housing market dynamics.  For 
example, in the Northeast and in California, there is relatively high income per-capita and high 
house prices. Therefore, one might expect MSA average house prices in these areas to move 
similarly, as changes in these individuals’ mobility could drive prices upward or downward 
simultaneously in all of these MSAs.  

However, previous studies have not fully addressed the differences between national house price 
comovement across the entire United States compared to comovement between a subset of 
MSAs. Given that housing prices vary by location, we expect much heterogeneity in the links 
between metropolitan residential property markets and the national housing market leading to 
different clusters. National policies can have different effects in different MSAs and that when 
assessing the risks associated with a local housing market one should focus on local as opposed 
to only considering national dynamics. Previous studies also lack a comprehensive exploration of 
the mechanisms that lead to clustering across MSAs, such as residents seeking more affordable 
housing in nearby areas or cross-MSA housing market dynamics. Therefore, an under-explored 
set of questions are: what U.S. cities tend to see similar comovements in house prices? And why? 

This study fills the gap in the literature and addresses the methodological shortcomings, by 
incorporating a novel similarity element into a multivariate Markov-switching framework that 
builds on existing clustering models. We consider two channels of house price cycle 
comovement across MSAs. The first channel we consider is common timing of house price 
recessions. By using Markov-switching dynamics, our study captures large movements between 

 
1 Although used in a different context than in our paper, the concept of regional clusters in some industries was used 
in Hamilton and Owyang (2012). 
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high house price growth phases and relatively low growth phases. Thus, the time-series 
clustering framework captures commonality in these regime shifts rather than short-horizon 
movements that are potentially noisier. Second, there may be feedback effects. In this scenario, 
increases in some MSAs’ house price growth induces a rise in a particular “nearby” or “similar” 
MSA’s house price growth, which in turn can cause additional house price growth in the other 
MSAs, etc.2 Incorporating such feedback or multiplier effects can result in more precise 
estimates of the effects of variables under consideration. Our time-series clustering model that 
incorporates the similarity (in terms of geographic proximity) outperforms the model without 
one, across a number of model specifications. In a second step, we use a multinomial logistic 
model to investigate which characteristics of MSAs in the same cluster tend to be correlated with 
cluster membership. 

We find seven distinct house price clusters among the top 100 U.S. MSAs. Geographic 
proximity is important for house price cycle comovement in some of these clusters, even after 
controlling for distances between MSAs. Other clusters are comprised of MSAs that are not 
geographically close to each other but have similar economic characteristics (such as income 
per-capita, the elasticity of housing supply, and house prices). In this case, at least one cluster is 
comprised of some MSAs that are on the opposite coasts of the U.S.  This study also identifies a 
national housing recession that affects all clusters, while other housing downturns are specific to 
individual clusters. With regard to the timing of house price downturns, the Great Recession 
housing downturn was the only instance where there was comovement across all 100 MSAs in 
our sample. All other house price downturns were confined within a single cluster. 

For robustness, we compare our baseline model that uses distance as the measure of MSA 
similarity to an alternative that gives greater weight to MSAs with similar population sizes. We 
find that using distance to control for similarity effects fits the data better than using population, 
despite both the time-series and cross-sectional variation contained in population data. 

We also consider the link between house price cycles and the business cycle. To examine this 
issue, we apply our Markov-switching model to employment growth data in the same set of 
MSAs during the same time frame. We find sharp differences between the house price cycle 
comovement and employment comovement across cities, both in recession timing and cluster 
composition. We conclude that homes experience both a “volume cycle” (which previous 
researchers find is tightly linked with the business cycle) and a “price cycle” (which is identified 
in our study).3 

Our study contributes to the existing literature by directly measuring the degree of house price 
comovement across groups of MSAs and providing explanations for this comovement. Our 
results imply that geographic proximity is important for house price cycle comovement in some 
clusters, even after controlling for distances between MSAs. We also highlight the differences 
between house price comovement and employment comovement across cities, expanding our 
understanding of housing and business cycles. Methodologically, our study adds to the spatial 

 
2 See, for example, Cohen (2010). 
3 See Leamer (2015) for discussion of the “volume cycle” and the “price cycle”. 
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and time-series econometrics literatures by developing and estimating a generalization of other 
Markov-switching models.4 

The findings of this study have important implications for various stakeholders in the housing 
industry, including policymakers, investors, and real estate professionals. Policymakers can use 
the insights gained from understanding the clustering of house price movements to design more 
targeted and effective policies. By recognizing the heterogeneity of housing dynamics across 
different MSAs, policymakers can develop region-specific strategies to address housing 
affordability, financial stability, and economic growth. Investors and real estate professionals can 
benefit from the findings by gaining a deeper understanding of the diversification potential and 
risk profiles of different housing markets. This knowledge can inform investment decisions, 
portfolio management strategies, and risk mitigation approaches in the residential real estate 
sector. In particular, our results may be useful to single-family housing investors in the U.S., who 
purchased 24 percent of all single-family homes sold in 2021, up from 15 percent per year in the 
prior 8 years.5 Additionally, the methods developed in this paper will help housing researchers 
determine the answers to these questions at other spatial and temporal scales, both in the U.S. 
and internationally. 

In the remainder of this paper, we first review the literature on house price diffusion in general 
and on Markov-switching models and their application to business cycle comovement across 
geographic regions. Then we present our innovation to the Hamilton and Owyang (2012) model, 
which allows for direct housing price growth comovement between MSAs. We next describe the 
data for housing price growth in the MSAs that we use in our application, and then we present 
results from our housing price growth Markov-switching models for the U.S., covering the 
period of the 1970s to 2018. The subsequent section, a crucial part of this paper, is an analysis 
that explores what factors determine cluster membership. We continue with a discussion of 
whether the house price and employment cycles are unique, and whether there is both a volume 
and price cycle for housing. We conclude the paper with a summary of our findings and 
suggestions for future research. 

2. Literature Review 

An important methodology that has received some (but limited) attention in the literature on 
house price comovement is the Markov-switching model. More generally, the Markov-switching 
model outlined by Hamilton (1989) is a standard framework to determine periods of expansion 
and recession in a time series. Hamilton and Owyang (2012) extended the Markov-switching 
framework to consider common recession across geographic areas in a parsimonious manner 
using time series clustering.  

The approach of time series clustering in general was first outlined by Frühwirth-Schnatter and 
Kaufmann (2008). Hamilton and Owyang (2012) applied time-series clustering to state-level 
employment growth and found a number of sub-national business cycles underlying the national 

 
4 The Hamilton and Owyang (2012) Markov-switching model is a prime example of the basis of our generalization. 
5 See: https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/07/22/investors-bought-a-quarter-of-
homes-sold-last-year-driving-up-rents (accessed 3/4/2023). 

https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/07/22/investors-bought-a-quarter-of-homes-sold-last-year-driving-up-rents
https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/07/22/investors-bought-a-quarter-of-homes-sold-last-year-driving-up-rents
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cycle.6 Hernández-Murillo et al. (2017) applied a similar model data on housing starts at the 
MSA-level. Their study found a national housing cycle that correlates with the national business 
cycle with deviations for three clusters of cities. 

A number of recent papers use Markov-switching models for real estate applications, but not in 
the context of housing, include Chou and Chen (2014) and Anderson et al. (2012), who consider 
the relationships between Real Estate Investment Trusts (REITs) and monetary policy. Another 
Markov-switching study is Carstens and Freybote (2021), who analyze how the tone of REIT 
statements impacts the commercial real estate investing environment. Liow and Ye (2017) use 
switching models to study the relationships between the Global Financial Crisis and international 
public real estate markets. Beracha et al. (2019) focus their analysis on estimating how the 
commercial real estate risk premium is determined by various factors, in a Markov-switching 
context. Freybote and Seagraves (2018) find that investor sentiment has a positive effect on 
turnover in the U.S. commercial (office) real estate sector, based on estimations with Markov-
switching regressions.   

The literature examining the dynamics of housing prices is quite extensive.  Many geographies 
and statistical methods are utilized in examining numerous topics. Since location characteristics 
are important for housing prices, the role of spatial dependencies in housing markets has been 
found to be of significant importance.7  As noted by Wong, Yiu, and Chau (2012), the focus of 
most studies has been on correcting for bias or improving efficiency. 8 For example, Osland 
(2010) applied spatial econometric techniques to hedonic house price modeling in the case of 
privately-owned, single-family homes in Norwegian municipalities and found that such 
modeling added explanatory power relative to a base model.  Hyun and Milcheva (2018), in the 
context of apartment transactions in South Korea, show that there are asymmetric spatial effects.  
Nearby apartment prices serve a benchmark function during a boom, but they are far less useful 
in capturing housing market dynamics during a bust. Finally, Clauretie and Daneshvary (2009) 
consider spatial aspects of foreclosures, and develop methods to control for time on the market. 
One housing study that relies on Markov-switching models is Nneji et al. (2013), who examine 
bubbles in the U.S. housing market.   

We next discuss some papers dealing with house price comovement,9 rather than house price 
diffusion.10 Specifically, the analysis is on the movement of housing prices across regions 
contemporaneously rather on the movement of prices in one region over time in response to an 

 
6 Another related paper focused on MSAs, is by Arias et al. (2016). Based on a dynamic factor model, they highlight 
the heterogeneity of business cycles at the metropolitan level. In a related paper, Owyang et al. (2013) find much 
heterogeneity in employment cycles across 57 large U.S. cities. 
7 A voluminous literature exists with Dubin (1988) and Can (1992) are frequently cited as the first papers to apply 
spatial econometric techniques in the context of real estate prices. More recently, Baltagi, Fingleton, and Pirotte 
(2014), Baltagi and Bresson (2011), Besner (2002), and Basu and Thibodeau (1998) developed more rigorous 
approaches to estimate spatial econometrics in the context of hedonic housing price models.  
8 In contrast, Wong, Yiu and Chau (2012), using spatial econometric techniques, argue that the price discovery 
process is the economic explanation for the spatially correlated prices of Hong Kong apartments. 
9 Fischer et al. (2021) focus on comovement at a very micro level (the New York City borough of Manhattan) and 
find that comovement is very local over the period of 2004-2015. 
10 For a recent example of the latter, see Cohen and Zabel (2021). 
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initial change in price in another region.  We begin by briefly discussing papers that analyze 
(pairwise) house-price comovement of a small number of areas via various statistical methods.  
Most of these papers focus on the statistical method and fit rather than the underlying economics. 

Using housing price indices for four Census divisions in the Western and Midwestern United 
States (Pacific, Mountain, West North Central, and East North Central), Zimmer (2015) 
compared a Gaussian copula approach with vine copulas, a more flexible approach. He found 
that the latter approach produced a better data fit and much stronger correlations between 
housing price movements, especially during extreme price changes. 

Another comovement paper is by Huang, Peng, and Yao (2019).  Using housing price indices for 
four “Sand States” (California, Florida, Arizona, and Nevada), they review the methods used in 
modeling housing price comovements and then propose using a self-weighted quasi-maximum 
exponential likelihood estimator.  They found asymmetric dependence of housing prices between 
certain states. 

Using cointegration as well as structural estimation, Klyuev (2008) found that regional house 
prices across Census regions the United States became more synchronized in the early 1990s, 
suggesting a common national housing market expansion. His work also anticipated the major 
correction of housing prices as part of the Financial Crisis/Great Recession.11 

Other research that motivates the potential reasons for comovement includes Oikarinen et al. 
(2018), who imply that the long-term supply elasticity of house prices varies substantially across 
areas. Leamer (2015) indicates that housing faces a volume but not a price cycle, because house 
prices are sticky downwards. In other words, homeowners will simply wait out a downturn rather 
than lower prices to sell. This implies that the housing supply elasticity is an important 
determinant of housing cycles. 

Zhu et al. (2013), in their U.S. regional-level analysis, appeal to an approach by Case et al. 
(1993) that leverages similarity in economic variables. Zhu et al. (2013) note that “geographic 
closeness” (which can be proxied for by latitude and longitude of the MSA) can be important 
reasons for commonality in house prices. Their approach also considers similarities in house 
prices, employment, and income across U.S. regional housing markets as potential reasons for 
comovement in house prices. Kallberg et al. (2014) also mention how income (e.g., GDP) 
similarities can be important reasons for U.S. MSA house prices to move together. Finally, Choi 
and Hansz (2021) use the Wharton Land Use Regulatory Index (WRLURI) [developed by 
Gyourko et al. (2008)] as a control variable in determining the reasons for U.S. MSA house price 
comovement. 

 
11 Closely related to studies on comovement are studies on long-run convergence.  One recent example is Barros, 
Gil-Alana, and Payne (2012).   Using U.S. state housing price indices and overall U.S. housing prices and fractional 
integration and cointegration techniques, they raise doubts about long-run convergence in U.S. state housing prices 
and the presence of the ripple effect.  On the other hand, Holmes, Otero, and Panagiotidis (2011) focus on long-run 
convergence across states and MSAs. Using pairwise unit root rejections, they find evidence supporting long-run 
convergence, with a speed of adjustment inversely related to distance. 
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Another paper that attempts to identify economic reasons for their statistical results, albeit not 
U.S. oriented, is Merikas et al. (2012).12  In their study, Merikas et al. (2012) explore whether the 
comovement of housing prices across seven Eurozone countries implied convergence of their 
housing markets.  They found that the movement of housing prices was affected by not only 
common fundamentals (e.g., GDP and interest rates), but also by idiosyncratic and structural 
factors, such as demographics, tax systems, and government interventions, which determine the 
duration and strength of housing cycles in these countries.  In addition, they explore differences 
in behavior in expansions versus contractions, which is similar to our research.13 

Turning to the analysis of (group) house-price comovement of variable clusters of areas, one 
finds a smaller number of papers.  For example, Clark and Coggin (2009) examined the time 
series properties of housing prices of US census regions to assess the convergence of these 
prices.  After reducing the number of regions to two super-regional factors, the evidence for club 
convergence was mixed. 

Apergis and Payne (2012), using housing price indices for U.S. states and the club convergence 
and clustering procedures of Phillips and Sul (2007), found three convergence clubs.14  One club 
consists of 29 states encompassing the BEA regions of the Mideast, New England, and Rocky 
Mountain plus several states from other regions.  Another club consists of 19 states primarily in 
the Southeast and Plains regions plus states from a few other regions.  The third club consists of 
two states in the Southeast region – Arkansas and Mississippi.  The underlying factors 
determining these clusters, such as migration and spatial arbitrage, are not explored. 

A final paper that is closer to our approach than Apergis and Payne (2012), is by Prüser and 
Schmidt (2021). Using a Markov-switching model and national and state-level housing prices, 
Prüser and Schmidt (2021) identify three house price regimes: a nationwide boom regime, a 
spatially limited (generally coastal) bust regime, and a nationwide bust regime. Thus, they are 
able to distinguish national house price cycles as well as cycles confined to a limited number of 
states. They focus on controlling for stochastic volatility in their econometric framework, 
opposed to regional spillovers in a similarity matrix. Second, they look at state-level cycles 
opposed to MSA-level housing cycles. Finally, Prüser and Schmidt (2021) find only one 
idiosyncratic regional cycle whereas others (e.g., Hernández-Murillo et al., 2017) find multiple 
regional cycles. 

In more general contexts, similarity weights matrices can take a variety of forms, including those 
where each element gives equal weight to contiguous neighboring jurisdictions and zero weight 
to other jurisdictions. Such matrices are common in the spatial econometrics literature, as in 

 
12 They identified a number of other cross-country studies that have explored the impact of synchronized monetary 
policy, integrated financial markets, financial liberalization, and global business cycle linkages on the comovement 
of house prices. 
13 The role of housing in business cycles is analyzed by Álvarez et al. (2009). They found that GDP cycles among 
Germany, France, Italy, and Spain showed a high degree of comovement, much higher than the comovement of 
housing prices. 
14 See Apergis and Payne (2012) for an extensive list of references exploring convergence in regional housing 
markets outside the United States, frequently in the United Kingdom. 
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LeSage and Pace (2009). Another possibility is to allow weights to depend on the inverse 
distance between two jurisdictions, so that nearby MSAs (as in our case) are given greater weight 
than those further apart. An additional possibility, which was first proposed by Case, Rosen and 
Hines (1993), is to allow for “similar” jurisdictions to be given greater weight, where measures 
of similarity can include population size (either total population or population consisting of 
various minority groups), gross state product, and income, among others. While this approach 
allows for many alternative forms of similarity, there are potential concerns of endogeneity with 
some of these matrices that are not a concern with the inverse distance or contiguity approaches. 

While Owyang et al. (2008) used a Markov-switching model to examine employment growth 
across cities, another related issue of interest has been the relationship between housing cycles 
and employment cycles. Past research, including Leamer (2007) and Hernández-Murillo et al. 
(2017), has found that business cycles (e.g., employment) and housing market cycles tend to 
move in tandem, particularly at the national level. Leamer (2015) similarly suggests that 
“Housing has a volume cycle, not a pricing cycle.” However, this statement was made with 
respect to the housing market’s link with the business cycle. Groshen and Potter (2003) and 
Jaimovich and Siu (2020), among others, find evidence of “jobless recoveries” where the 
duration of unemployment outlasts the housing market downturns.  Whether there are linkages 
between housing and employment cycles is an important question for those who attempt to 
forecast housing prices, and the potential synergies in these cycles are among the issues that we 
explore below. 

  

3. Approach: Clustered Housing Cycles with Comovement 

Our approach has similar roots as some of the studies described above, in that we apply spatial 
econometric techniques to a Markov-Switching model. But we offer several additional 
contributions. In our case, we examine housing prices across 100 U.S. MSAs.  Our focus on the 
importance of the stage of the business cycle in the context of spatial dependence has not been 
highlighted previously. An important element of our extension of Hamilton and Owyang (2012) 
is our incorporation of the term involving a similarity weights matrix. In addition to the 
similarity weighting methods, our paper includes the approach of time-series clustering.  To our 
knowledge, similarity weighting matrices have not been incorporated in the Markov-switching 
literature, which makes our approach novel.  

Our paper differs from Hernández-Murillo et al. (2017) in a number of ways. First, our paper 
focuses on house price comovement, opposed to housing starts. Second, our model captures 
comovement through the similarity weighting matrix, but their model imposes that there are no 
direct comovement across cities. Finally, our time sample begins in 1975, which allows us to 
capture more recessions than their sample that starts in 1989. 

The methodology outlined below parallels Hamilton and Owyang (2012), with several 
differences. First, our dependent variable is house price growth instead of employment growth. 
Second, we allow for house price growth to be directly correlated across MSAs, instead of 
limiting ourselves to house price growth in a particular MSA to depend on other MSAs’ house 
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price growth through contemporaneous recessions. Recall equation (1) in Hamilton and Owyang 
(2012): 

𝑦𝑦𝑡𝑡 =  𝜇𝜇0 + 𝜇𝜇1 ⊙  𝑠𝑠𝑡𝑡 + 𝜀𝜀𝑡𝑡 ,  (1) 

where 𝑦𝑦𝑡𝑡 = (𝑦𝑦𝑡𝑡1, … ,𝑦𝑦𝑡𝑡𝑡𝑡) is an (𝑁𝑁 × 1) vector and in our application, 𝑦𝑦𝑡𝑡𝑡𝑡 is house price growth 
for MSA 𝑛𝑛 at time 𝑡𝑡, 𝑠𝑠𝑡𝑡 =  (𝑠𝑠𝑡𝑡1, … , 𝑠𝑠𝑡𝑡𝑡𝑡) is a (𝑁𝑁 × 1) and 𝑠𝑠𝑡𝑡𝑡𝑡 = 1 when MSA n is in recession at 
time 𝑡𝑡, and 0 otherwise; ⊙ is element-by-element multiplication. 𝜇𝜇0 and 𝜇𝜇1 are the average 
house price growth in an expansion and recession, respectively. Also, 𝜀𝜀𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖(0,Ω), 𝑠𝑠𝑡𝑡 and 𝜀𝜀𝑡𝑡 are 
independent for all 𝑡𝑡 = 1, … ,𝑇𝑇, and 𝑠𝑠𝑡𝑡 follows a first-order Markov chain represented by the 
matrix 𝑃𝑃.15 The variance-covariance matrix Ω is assumed to be diagonal with diagonal elements 
𝜎𝜎𝑛𝑛2. This diagonality assumption ensures comovement is entirely captured by common recessions 
in the vector 𝑠𝑠𝑡𝑡 and the similarity matrix discussed next.16 

A crucial assumption is that there is no direct correlation in 𝑦𝑦𝑡𝑡 across states (from the diagonal 
assumption of Ω); the only reason why 𝑦𝑦𝑡𝑡 may be correlated across states is due to the possibility 
of recessions that are correlated across MSAs.17 Now, we relax this assumption and generalize 
equation (1) as follows, to allow, in the context of our application, for the potential of direct 
house price growth correlation across MSAs: 

𝑦𝑦𝑡𝑡 = 𝜌𝜌𝑾𝑾𝑦𝑦𝑡𝑡 + 𝜇𝜇0 +  𝜇𝜇1 ⊙  𝑠𝑠𝑡𝑡 + 𝜀𝜀𝑡𝑡 ,   (1’) 

 

where W is a symmetric, 𝑁𝑁 × 𝑁𝑁 similarity matrix, and 𝜌𝜌 is a constant with |𝜌𝜌| < 1. If we were to 
assume that an MSA’s house price growth rises from nearby MSAs’ house price growth 
(although in our model this relationship is not restricted to be in the positive direction), then 0 <
𝜌𝜌 < 1. The value of 𝜌𝜌 in this range indicates the degree of whether or not the feedback effects 
rate is large (i.e., close to 1) or small (close to 0). We describe the concept of the feedback 
effects below.  

The similarity matrix W has the (𝑛𝑛, 𝑗𝑗) element equal to 1/𝑑𝑑𝑛𝑛𝑛𝑛 if region 𝑛𝑛 is a “neighbor” to 
region 𝑗𝑗, and 0 otherwise. Note that we can vary the definition of 𝑑𝑑𝑛𝑛𝑛𝑛, and examine the 
robustness of our results to various definitions for 𝑑𝑑𝑛𝑛𝑛𝑛 .  For instance, 𝑑𝑑𝑛𝑛𝑛𝑛 might be the Euclidean 
distance between the centroids of MSAs 𝑛𝑛 and 𝑗𝑗. It could instead be the number of “neighbors” 
that MSA j has (where the “neighbors” could be contiguous or based on some other measure of 
similarity, such as the absolute value of the inverse of the difference in the population between 

 
15 This model assumes constant transition probabilities across time. Francis et al. (2019) allows various global 
shocks to influence the transition probabilities, so they are time varying. Because our study is primarily on which 
entities comove and not on the proximate shocks causing common downturns, we opted for the more parsimonious 
framework of constant transition probabilities. 
 
16 Francis et al. (2019) show that this assumption can be loosened by estimating the full covariance matrix using the 
method outlined by Carriero, Clark, and Marcellino (2019), but the full covariance model is dominated by our more 
parsimonious framework due to substantially fewer parameters and more intuitive cluster compositions. 
17 See Hamilton and Owyang (2012). 
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city 𝑛𝑛 and 𝑗𝑗, or other economic or demographic variables, which we discuss in the literature 
review section above). 

The specification in (1’) implies the possibility of feedback effects, similar in spirit to Cohen 
(2010), as increased house price growth in some specific set of MSAs leads to increased house 
price growth in a neighboring MSA, which in turn impacts house price growth in the specific set 
of MSAs, etc. Therefore, the total effect may be somewhat larger than the effect that would be 
apparent without such feedback effects. It is of interest to examine how such feedback effects 
can impact house price growth in an MSA, compared with the situation where there is no direct 
interaction between the house price growth rates in different MSAs. 

To demonstrate how to empirically model potential direct house price growth feedback effects, 
we can rewrite the above equation (1’) as: 

[𝑰𝑰 −  𝜌𝜌𝑾𝑾]𝑦𝑦𝑡𝑡 =  𝜇𝜇0 +  𝜇𝜇1 ⊙  𝑠𝑠𝑡𝑡 +  𝜀𝜀𝑡𝑡 

     
𝑦𝑦𝑡𝑡 = [𝐈𝐈 −  𝜌𝜌𝑾𝑾] −1[𝜇𝜇0 +  𝜇𝜇1 ⊙  𝑠𝑠𝑡𝑡 +  𝜀𝜀𝑡𝑡] 

𝑦𝑦𝑡𝑡 = ��𝜌𝜌𝒊𝒊𝑾𝑾𝑖𝑖
∞

𝑖𝑖=0

� [𝜇𝜇0 +  𝜇𝜇1 ⊙  𝑠𝑠𝑡𝑡 +  𝜀𝜀𝑡𝑡]     (1′′) 

First, we know that 𝑾𝑾0 =  𝑰𝑰,  where 𝑰𝑰 is an N by N identity matrix. Note, for instance, that 𝑾𝑾𝜇𝜇0 
is the weighted average of the “neighboring” MSAs’ average house price growth in an 
expansion, and 𝑾𝑾𝟐𝟐𝜇𝜇0  is the weighted average of the second-order neighbors’ average house 
price growth in an expansion (i.e., the weighted average of all neighbors of the neighbors’ 
average house price growth), etc.  

In addition to the feedback due to similarities across MSAs, we also incorporate time-series 
clustering into the model.18 Namely, we assume there are a “small” number of clusters. For 
cluster 1, for example, there is a (𝑁𝑁 × 1) vector ℎ1 = (ℎ11, … ,ℎ𝑁𝑁1)′. If MSA 𝑛𝑛 is a member of 
cluster 1, the 𝑛𝑛th element of ℎ1 equals 1, and 0 otherwise.  There is also an aggregate regime 
indicator, 𝑧𝑧𝑡𝑡 ∈  {1, 2, … ,𝐾𝐾 + 2}. When 𝑧𝑧𝑡𝑡 = 𝑘𝑘 for 𝑘𝑘 = 1, … ,𝐾𝐾, then all MSAs that are members 
of cluster 𝑘𝑘 are simultaneously in a house price recession while all other MSAs are in house 
price expansion. We call these first 𝐾𝐾 regimes “idiosyncratic cluster recessions.” The remaining 
two aggregate regimes, 𝐾𝐾 + 1 and 𝐾𝐾 + 2, are national house price recession and national house 
price expansion, respectively. In a national recession regime, all MSAs are in recession (i.e., 
ℎ𝐾𝐾+1 is a 𝑁𝑁 × 1 vector of ones). National expansion occurs when all MSAs are in house price 
expansionary phases and therefore ℎ𝐾𝐾+2 is a 𝑁𝑁 × 1 vector of zeros. 

Now, define 𝜇𝜇𝑛𝑛 = [𝜇𝜇𝑛𝑛0 𝜇𝜇𝑛𝑛1]′ and 𝑉𝑉(𝑧𝑧𝑡𝑡,ℎ) = [1, ℎ𝑛𝑛,𝑧𝑧𝑧𝑧]′. Then, we can rewrite (1’’) as: 

 
18 The approach we follow below parallels Hamilton and Owyang (2012) and Frühwirth-Schnatter and Kaufmann 
(2008). 
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𝑦𝑦𝑡𝑡 = ��𝜌𝜌𝒊𝒊𝑾𝑾𝑖𝑖
∞

𝑖𝑖=0

� [𝜇𝜇𝑛𝑛′ 𝑉𝑉(𝑧𝑧𝑡𝑡,ℎ) +  𝜀𝜀𝑡𝑡] 

If the values of (ℎ1, … , ℎ𝐾𝐾) are known, we have a standard Markov-switching model. But we 
need to understand the “configurations” of (ℎ1, … ,ℎ𝐾𝐾) from the data, since the values of 
(ℎ1, … ,ℎ𝐾𝐾) are not observed, but they influence the probability distribution functions of the 
observed 𝑦𝑦𝑡𝑡. Therefore, cluster membership is determined by similar movement in house price 
growth. Unlike Hamilton and Owyang (2012), we impose that a city can only be a member of a 
single cluster as in Hernández-Murillo et al. (2017), since this coincides better with the idea of 
economic regions.19 

 

 

4. Estimation 

We estimate the similarity-clustering model by using the Bayesian method of Gibbs sampling. 
The Gibbs sampler is an MCMC technique that partitions the parameters and latent variables into 
separate blocks so that each block can be sampled from its conditional distribution given the 
other blocks. It is particularly useful when sampling from the full joint posterior distribution is 
difficult or infeasible. 

We assume values for both the data 𝑌𝑌 and the similarity matrix 𝑊𝑊 are known. The parameters 
and latent variables are partitioned into six blocks: (i) the average regime growth parameters 𝜇𝜇, 
(ii) the variance parameters 𝜎𝜎, (iii) the coefficient on the similarity term 𝜌𝜌, (iv) the cluster 
membership indicators, 𝐻𝐻, (v) the transition matrix 𝑃𝑃, and (vi) the latent regime time-series 
indicator 𝑍𝑍.  

The prior distributions and Gibbs sampling steps follow closely with those of Hamilton and 
Owyang (2012) and Francis et al. (2019). The prior distributions are outlined in Table 1. We 
outline each of the steps of the Gibbs sampler in their entirety in the Appendix. 

[Insert Table 1 Here] 

The number of regional clusters 𝐾𝐾 is a model selection issue. Hamilton and Owyang (2012) use 
cross-validation to compute marginal likelihoods in order to determine the optimal number of 
clusters. However, as mentioned by Hernández-Murillo et al. (2017), computing marginal 
likelihoods are prohibitively time-consuming when 𝑁𝑁 is relatively large. Therefore, we use BIC 
as an approximation of the marginal likelihood to determine the optimal number of clusters.  

To avoid label switching we make the standard assumption that the average growth rate of house 
prices is larger during expansion phases than during recession phases (i.e., 𝜇𝜇0 > 𝜇𝜇0 + 𝜇𝜇1). This 
assumption is made to identify 𝑠𝑠𝑡𝑡 = 0 as the “expansion” regime and 𝑠𝑠𝑡𝑡 = 1 as the “recession” 

 
19 To maintain comparability to Hamilton and Owyang (2012), autoregressive terms of 𝑦𝑦 were left out of the model. 
However, the model could be further generalized to allow for AR terms on the right-hand-side. 
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regime. Note that we do not impose a negative growth rate during recession phases, so in some 
cases house price recessions are characterized by relatively low but still positive average growth. 

5. Data 

The model requires two sets of data: (i) housing price growth (and employment growth for the 
subsequent analysis of employment clusters) represented in 𝑌𝑌, and (ii) the similarity (or 
equivalently, weighting) matrix given by 𝑊𝑊. For housing price growth, we use the MSA-level 
house price index from Freddie Mac. The data are monthly and cover the time period 1975 – 
2018. We seasonally-adjust each housing index using the standard X13ARIMA methodology. To 
smooth out monthly fluctuations, we use the quarterly average of the monthly observations.20 
The mean of the growth rates for each MSA are approximately in the range of 1% to 6% per 
quarter. MSAs on the higher end include Los Angeles (6.66%) and San Francisco (7.09%), with 
the lower end being comprised of Toledo, OH (2.7%) and Youngstown, OH (3.04%). MSAs 
with the highest standard deviation of house price growth include those in California, Florida, 
and Nevada. On the other hand, the most stable markets include those in the Midwest and South 
(such as Columbus, OH and Chattanooga, TN). Cohen, Coughlin and Yao (2016) provide a 
detailed analysis of house price trends in U.S. cities. We present conditional average growth 
rates and standard deviations in the next section; full sample statistics for the house price data are 
available from the authors upon request. The employment data are total nonfarm employment 
from the U.S. Bureau of Labor Statistics (BLS), and it consists of quarterly data for the 100 
largest MSAs from the period 1975:1-2018:3. For MSAs in which employment data did not go 
back to 1975, we extrapolated the missing data by applying the appropriate state quarterly 
growth rate of employment from the BLS. 

With MSA-level data, contiguity is not applicable because MSAs are spread out and in many 
cases, they do not have contiguous neighbors. For these reasons, we use the inverse of the 
Euclidean distance as elements of the similarity matrix, which can be expressed as below. The 
distances between each MSA pair are calculated using the latitude and longitude of the centroid 
of each MSA pair. Specifically, the (𝑖𝑖, 𝑗𝑗) element of the similarity matrix, W, takes the form: 

 

𝑤𝑤𝑖𝑖𝑖𝑖 = � 1
𝑑𝑑𝑖𝑖𝑖𝑖
� /∑ � 1

𝑑𝑑𝑖𝑖𝑖𝑖
�𝑘𝑘 , 

 

where 𝑑𝑑𝑖𝑖𝑖𝑖  is the Euclidean distance (i.e., based on pairs of latitudes and longitudes) between any 
two MSAs, 𝑖𝑖 and 𝑗𝑗; and 𝑤𝑤𝑖𝑖𝑖𝑖 = 0. 

 

 

 
20  
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6. Results 

We first address whether inclusion of the similarity matrix is necessary and if it improves model 
fit. Table 2 shows the BIC based on the posterior medians for the model with and without a 
similarity weighting matrix based on various numbers of regional clusters K. The model that 
includes the similarity weighting matrix is a large improvement over the model without a 
similarity weighting matrix as indicated by the smaller BIC for all possible choices for K. This 
result is perhaps unsurprising since the weighting matrix adds a large amount of information at 
the cost of a single parameter, 𝜌𝜌. The estimates for the coefficient 𝜌𝜌 provide additional support to 
the necessary inclusion of the similarity weighting matrix. The median posterior value for 𝜌𝜌 is 
0.662 with a 90% highest posterior density (HPD) interval of [0.657, 0.667]. Such a high weight 
(relative to the theoretical maximum of 1) implies that the regional comovement captured by the 
similarity weighting matrix play an important role in explaining movements in MSA-level house 
prices. 

[Insert Table 2 Here] 

Table 2 also informs us of the optimal number of clusters 𝐾𝐾 to use in our application. Since the 
model with 𝐾𝐾 = 7 minimizes BIC, we use that specification for the remainder of the paper. Note 
that the optimal 𝐾𝐾 is underestimated if no similarity weighting matrix is included in the model 
since the five-cluster model minimizes BIC across model specifications without the similarity 
weighting matrix. One potential explanation for this result is that geographic linkages are not 
controlled for directly in the model without a similarity weighting matrix. In this parsimonious 
setup, large geographic trends may dominate in determining the cluster relationships thus 
understating the “true” number of clusters. 

6.1 Baseline Model Results 

We find much heterogeneity across MSAs regime-specific parameter estimates. Table 3 shows 
the posterior median draw for each MSA’s average growth rate under expansion (𝜇𝜇0), average 
growth rate under recession (𝜇𝜇0 + 𝜇𝜇1), and standard deviation (𝜎𝜎). The seven MSAs with the 
fastest housing-price growth rates during expansions are all located in California, including San 
Francisco, Los Angeles, and San Jose. The MSAs with the slowest growing house prices during 
expansions include Jackson, MS, Wichita, KS, and Augusta, GA. 

[Insert Table 3 Here] 

We do not find a strong link between average growth rates in expansion and average growth 
rates in recession, as the correlation between 𝜇𝜇0 and 𝜇𝜇0 + 𝜇𝜇1 is 0.01 across MSAs. In other 
words, across MSAs higher housing price growth rates in expansions provide little information 
about housing price growth rates in recessions. 

The MSAs that have the shallowest house-price recessions (i.e., largest values for 𝜇𝜇0 + 𝜇𝜇1) 
include Pittsburgh, PA, Buffalo, NY, and San Jose, CA. Conversely, Lakeland, FL, Jacksonville, 
FL, and Chicago, IL tend to have the deepest house-price recessions (i.e., smallest values for 
𝜇𝜇0 + 𝜇𝜇1). 
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In terms of residual volatility, the 20 most volatile MSAs mostly include those in California (San 
Jose, Bakersfield, Fresno, Riverside, Sacramento, Stockton, Oxnard, San Diego, Los Angeles) 
and Florida (Cape Coral, Palm Bay, North Port, Miami). Note that this residual volatility reflects 
movements in housing prices that are independent of the aggregate cycle, such as MSA-level 
housing booms or busts. MSAs with high residual volatility tend to also have higher mean 
growth rates in expansion, with a correlation of 0.58 between 𝜎𝜎 and 𝜇𝜇0 across MSAs. 
Additionally, we find a correlation of -0.22 between 𝜎𝜎 and 𝜇𝜇0 + 𝜇𝜇1 , implying MSAs with 
relatively high idiosyncratic volatility also tend to have deeper house price recessions. 

We now investigate which MSAs cluster together once we account for the contemporaneous 
cross-sectional similarity relationship. Figure 1 displays a choropleth map with different colors 
representing membership in one of the seven clusters. Each MSA is associated with the cluster 
for which it has a probability of membership greater than 0.5. Three of the MSAs in our sample 
belong to no cluster (i.e., none of their cluster membership probabilities exceeded 0.5); these 
include Birmingham, AL, Urban Honolulu, HI, and Jackson, MS. Cluster 1 is comprised of five 
MSAs in Florida as well as two in Georgia. Cluster 2 only has four MSAs, primarily located in 
Tennessee (Nashville, Memphis, and Chattanooga) along with Milwaukee, WI. MSAs in cluster 
3 include seven from Ohio (Cincinnati, Cleveland, Columbus, Dayton, Akron, Toledo, and 
Youngstown) and five from North Carolina (Charlotte, Raleigh, Greensboro, Winston-Salem, 
and Durham). Cluster 4 contains most of the Northeast region included in our sample plus all 
MSAs in California (with the exception of Fresno) and the Washington D.C. area. Cluster 5 is a 
small cluster of six MSAs, which include two in Pennsylvania (Harrisburg and Scranton), 
Virginia Beach, VA, Albuquerque, NM, El Paso, TX, and Little Rock, AR. On the other hand, 
cluster 6 is relatively large with 24 MSAs spread across the United States, primarily in the West 
and West-South-Central Regions. Finally, cluster 7 is comprised of eight MSAs including five in 
the Midwest (Chicago, Detroit, Minneapolis, Kansas City, and Grand Rapids) and two in South 
Carolina (Greenville and Columbia). 

[Insert Figure 1 Here] 

There are two main takeaways from our model’s cluster composition. First, geographic 
proximity still matters for the timing of housing market downturns even when distance is 
accounted for in the similarity weighting matrix. Therefore, regional models should include 
direct comovement (as we do with the similarity weighting matrix) as well as longer-term 
cyclical comovement (which we account for with clustered recessions). Second, other factors 
influence common house-price recession timing besides geographic proximity. This finding is 
illustrated by cluster 4, which includes two regional groups (the Northeast and California) that 
have short distances within groups but relatively large distances between them. 

Recall that our clustered time series model provides recession timing when house prices are in (i) 
national expansion, (ii) national recession, or (iii) an idiosyncratic cluster recession. Figure 2 
displays the posterior probability of each of these possibilities at each time period in our sample. 
We also indicate NBER recession dates with gray bars for comparison to the national business 
cycle. Table 4 displays this timing in a tabular format like how the NBER outlines historical 
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recessions.21 Periods of national house-price expansion are rare particularly after the recessions 
of the early 1980s.22 The only period of a national recession in house prices is 2007-2011, which 
brackets the Great Recession. This time-period is the only one where enough MSAs were in a 
downturn to be deemed a national house-price recession according to our model. Besides the 
Great Recession, idiosyncratic cluster house-price recessions are prevalent since 1984. That is, 
we find that although most MSAs are in house-price expansion at any given time-period, 
different regions across the United States experience their own house-price downturns. Some 
clusters capture one-time events, such as cluster 6 picking up the downturn from 1983 until the 
middle of 1989 or cluster 7 picking up an idiosyncratic house price downturn in 1982. 

[Insert Figure 2 Here] 

[Insert Table 4 Here] 

The Markov assumption about the regime variable provides some insight into how timing of the 
national and cluster cycles interact. Table 5 shows the posterior median for the transition 
probabilities for the aggregate regime variable 𝑧𝑧𝑡𝑡. The national expansion regime is less 
persistent than the other regimes with a probability of 0.33 of continuing in a national expansion 
at time 𝑡𝑡 conditional on being in national expansion at 𝑡𝑡 − 1. The most likely transitions from a 
national expansion are into an idiosyncratic recession in either cluster 2 or 3. The national 
recession regime is relatively more persistent than the national expansion regime, and the most 
likely transition out of a national recession is into a localized recession for cluster 3. The clusters 
that are most likely to transmit a local recession to a national one are cluster 1 and cluster 7, each 
with a 0.17 probability. 

[Insert Table 5 Here] 

6.2 Comparison to Population Similarity Matrix 

In our baseline specification we assume house price comovement occurs due to geographic 
proximity of MSAs, and therefore use inverse distance in the similarity matrix. However, the 
literature suggests regional comovement is captured by several alternative metrics (as in Case, 
Hines and Rosen, 1993), including major population centers. Thus, in this section, we consider 
an alternative similarity matrix using MSA-level population. 

The alternative metric of population complicates our modelling relative to using distance since 
population varies across time. Therefore, we adjust the framework outlined in section 1 to allow 
for a time-varying similarity matrix, 𝑾𝑾𝒕𝒕 at time period 𝑡𝑡 with time-varying elements, 𝑤𝑤𝑡𝑡,𝑖𝑖𝑖𝑖. 
Population at an MSA-level is available on an annual basis, so we hold 𝑾𝑾𝒕𝒕 constant throughout 
the four quarters of each respective year. Finally, we trim the housing price data in 𝑌𝑌 to end in 

 
21 See https://www.nber.org/cycles.html. 
22 We should note that this refers to the model’s regime of “national house-price expansion” when all MSAs are 
jointly in an expansion state. We acknowledge the difference with the more common usage of national expansion 
wherein most MSAs are in expansion, but not all. This state is similar to the “idiosyncratic cluster recession” where 
a downturn is isolated to a specific set of MSAs. 

https://www.nber.org/cycles.html
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2017 to match the availability of the population data. Each element of 𝑾𝑾𝒕𝒕, denoted as 𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕 , is 
given as follows: 

𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕 =  

𝟏𝟏
�𝑷𝑷𝑷𝑷𝑷𝑷𝒊𝒊,𝒕𝒕− 𝑷𝑷𝑷𝑷𝑷𝑷𝒋𝒋,𝒕𝒕�

∑ 𝟏𝟏
�𝑷𝑷𝑷𝑷𝑷𝑷𝒊𝒊,𝒕𝒕− 𝑷𝑷𝑷𝑷𝑷𝑷𝒋𝒋,𝒕𝒕�𝒋𝒋

�  , where 𝑷𝑷𝑷𝑷𝑷𝑷𝒊𝒊,𝒕𝒕 is the population in MSA i in year t,  

and 𝑖𝑖 =  1,2, … ,𝑁𝑁,  𝑗𝑗 =  1,2, … ,𝑁𝑁, and 𝑡𝑡 =  1975,1976, … , 2017. This implies that MSAs 
with similar populations as MSA 𝑖𝑖 receive higher weight than MSAs with dissimilar populations, 
in a given year, 𝑡𝑡. 

To analyze which similarity metric – distance or population - fits the data best, we focus again on 
BIC for each model.23 The posterior median BIC for our baseline model using distance is 96916 
whereas the BIC for the alternative model using population is 100749. The model using distance 
in the similarity matrix has a lower posterior median BIC, implying that geographic proximity is 
the better measure for capturing housing price comovement in this clustering framework. This 
result is noteworthy given that population varies across time, thereby providing additional time 
series dynamics not included in the distance model. However, the static measure of distance fits 
better than the time-varying measure of population. The fact that the HPD interval for the BIC of 
the population model, [100646, 100698], does not overlap with the HPD interval for BIC of the 
distance model, [96826, 97017], further increases our confidence that geographic distance is the 
appropriate similarity variable. 

 

6.3 Determinants of Housing Clusters 

The time series clustering framework utilized in our study grouped MSAs based on similar 
fluctuations (i.e., expansions and recessions) in house price indices. In this section, we 
investigate if the MSAs in a respective cluster have similar characteristics. In other words, we 
address the question: why is an MSA in the same housing cluster as some MSAs but not others? 
The model already controls for geographic proximity through the similarity weighting matrix, 
but there may be other important factors that drive MSAs to be members of a specific cluster. 

We begin by defining the cluster associations ℎ�𝑛𝑛 ∈ {1,2, … ,7} for each MSA, which is based on 
the posterior cluster membership represented in Figure 1. Let 𝑋𝑋𝑛𝑛 be a (𝑄𝑄 × 1) vector of MSA-
level observable characteristics. Our goal is to see which of the variables in 𝑋𝑋 tend to increase 
the probability that a general MSA would be a member of cluster 𝑘𝑘. Since ℎ�𝑛𝑛 is a categorical 
variable (with no ordering – the cluster numbers are arbitrary), we use a general multinomial 
logistic model that takes the following form: 

Pr�ℎ�𝑛𝑛 = 𝑘𝑘|𝑋𝑋𝑛𝑛� = exp (𝛼𝛼𝑘𝑘+𝛽𝛽𝑘𝑘
′𝑋𝑋𝑛𝑛)

∑ exp (7
𝑗𝑗=1 𝛼𝛼𝑗𝑗+𝛽𝛽𝑗𝑗

′𝑋𝑋𝑛𝑛)
, 

 
23 Full results (e.g., parameter estimates, cluster membership, etc.) for the model with a population spatial similarity 
matrix are available from the authors upon request. 
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where 𝛽𝛽𝑘𝑘 = �𝛽𝛽𝑘𝑘1, … ,𝛽𝛽𝑘𝑘𝑘𝑘�. We set the reference category to cluster 7 which implies the 
restrictions 𝛼𝛼7 = 0 and 𝛽𝛽7 = 0.24 In logit models, the coefficient 𝛽𝛽𝑘𝑘𝑘𝑘 represent the marginal 
effect of variable 𝑋𝑋𝑛𝑛𝑛𝑛 on the log odds of a MSA being in cluster 𝑘𝑘 compared to being in the 
reference cluster (in our normalization, cluster 7).  

To ease interpretation of the effect of 𝑋𝑋𝑛𝑛𝑛𝑛, we translate the estimated coefficients into estimated 
marginal effects. These marginal effects are calculated based on the implied cluster probabilities 
of two hypothetical clusters, which we will call MSA 𝑟𝑟 and MSA 𝑠𝑠. We assume these two 
MSA’s are identical in their characteristics 𝑋𝑋𝑟𝑟 and 𝑋𝑋𝑠𝑠 except for one variable 𝑋𝑋𝑟𝑟𝑟𝑟 and 𝑋𝑋𝑠𝑠𝑠𝑠. 
Practically, we set all characteristics besides the 𝑞𝑞th variable to their cross-section average: 
𝑋𝑋𝑟𝑟,−𝑞𝑞 = 𝑋𝑋�−𝑞𝑞 and 𝑋𝑋𝑠𝑠,−𝑞𝑞 = 𝑋𝑋�−𝑞𝑞. For the 𝑞𝑞th variable, we set 𝑋𝑋𝑟𝑟𝑟𝑟 to one standard deviation above 
the cross-sectional average for 𝑋𝑋𝑛𝑛𝑛𝑛 (i.e., 𝑋𝑋𝑟𝑟𝑟𝑟 = 𝑋𝑋�𝑛𝑛𝑛𝑛 + 𝜚𝜚𝑞𝑞, where 𝜚𝜚𝑞𝑞 is the standard deviation for 
𝑋𝑋𝑛𝑛𝑛𝑛) and conversely set 𝑋𝑋𝑠𝑠𝑠𝑠 to one standard deviation below the average (𝑋𝑋𝑟𝑟𝑟𝑟 = 𝑋𝑋�𝑛𝑛𝑛𝑛 − 𝜚𝜚𝑞𝑞). We 
then calculate the implied probability of membership in cluster 𝑘𝑘 for each MSA given these 
marginal differences in one characteristic. The difference between these two implied 
probabilities provides us with the estimated marginal effect: 

𝑀𝑀𝐸𝐸𝑘𝑘𝑘𝑘 = Pr�ℎ�𝑟𝑟 = 𝑘𝑘|𝑋𝑋�−𝑞𝑞 ,𝑋𝑋�𝑛𝑛𝑛𝑛 + 𝜚𝜚𝑞𝑞� − Pr�ℎ�𝑠𝑠 = 𝑘𝑘|𝑋𝑋�−𝑞𝑞,𝑋𝑋�𝑛𝑛𝑛𝑛 − 𝜚𝜚𝑞𝑞�. 

In simple terms, the marginal effect tells us the difference in probabilities for a MSA with a 
relatively high value for a characteristic compared to a MSA with a relatively low value for that 
same characteristic, holding other factors constant. 

We consider seven MSA-level characteristics in 𝑋𝑋. These include the Wharton Residential Land 
Use Regulatory Index (WRLURI, from Gyourko et al. 2008), the house price elasticity (from 
Saiz 2010), the average log of employment between 1975- 2018, average log of per capita 
income between 1975-2018,  average log of the house price index from 1975-2018, the latitude 
of the MSA centroid, and the longitude of the MSA centroid. Descriptive statistics for these 
variables (excluding the latitude and longitude variables) are presented in Table 6. 

[Insert Table 6 Here] 

Table 7 presents the estimated marginal effects of each variable on the probability of 
membership in each cluster. The MSA members of cluster 1 tend to be more southern (i.e., they 
have a low latitude). Cluster 3 MSA’s tend to be more eastern (i.e., have a higher longitude, 
given that the longitude values are negative). Membership in cluster 4 tends to be characterized 
by MSAs with low house price elasticity, high income per capita, and a high house price index. 
MSAs in cluster 5 tend to have low employment. Cluster 6 MSAs tend to be more in the western 

 
24 Note that this assumption is necessary for identification and is arbitrary. Any other cluster could be the reference 
cluster and the results would be unchanged. 
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direction (i.e., have low longitude), low income per capita, and a low house price index. None of 
the factors describe membership in clusters 2 and 7 in a significant manner.25 

[Insert Table 7 Here] 

Several of these findings have potentially interesting underlying explanations. Anecdotally, 
cluster 4 contains MSAs that have a focus on information technology (Boston, New York City, 
San Francisco), and are centers for the arts, television, and movie production (Los Angeles and 
New York City). In all these cities (and predominant industries) in cluster 4, there is relatively 
high income per-capita and high house prices. This implies that perhaps these cities’ house prices 
move together because their residents have similar skills and preferences for type of housing 
(i.e., high density, older and in some of the very largest, wealthiest cities), so downturns in per-
capita income can affect all of these MSAs by a lack of desire to move to these more expensive 
housing markets. Several southern cities, such as Phoenix, Atlanta, Miami and other MSAs in 
Florida, and cities in South Carolina, are located in cluster 1, where many retirees make choices 
on where to live. These cluster 1 MSAs experience similar housing downturns, perhaps because 
decisions on when to retire can impact housing markets in all of these retirement locations at the 
same time. Cluster 3 consists of MSAs in Ohio, Indiana, Iowa, and the western part of North 
Carolina, all of which are in an area with similar longitude. House prices in cluster 3 tend to 
move in a similar direction since it is likely that individuals who desire to migrate out of the 
lower Midwest are choosing to do so at around the same time. Cluster 5 MSAs are scattered 
around the country; we lack a straightforward explanation for membership. Cluster 6 has MSAs, 
located in the west and west south-central regions, with low employment and relatively low 
house prices. It is likely that individuals who initially preferred this geographic area but later 
chose to move due to fewer employment opportunities have chosen to do so around the same 
time, which could increase relative housing supply around the same time in these MSAs. 

 

6.4 Comparison to Employment-Based Clusters: Is the Housing Cycle the same as the 
Business Cycle? 

These previous results focus on commonality in housing price movements. Previous studies 
suggest that movements in the housing cycle are intertwined with the economic business cycle.26 
We investigate this idea of “housing is the cycle” by comparing the clusters from our model 
using housing prices to the clusters implied by a similar model which uses MSA-level 
employment growth. Specifically, we use the log difference in employment for each MSA.  

Figure 3 presents cluster membership for each MSA based on employment growth. Substantially 
more MSAs (10) are not members of any cluster compared to the house price results. There are 
some similarities between the employment clusters and the house price clusters. Employment 

 
25 A helpful referee suggested we try including a control for whether or not an MSA was a “coastal” city. We tried 
this and found the coastal variable was insignificant for all clusters except for Cluster 2. That cluster consists of 
several MSAs in Tennessee, which does not seem to correlate with coastal locations. Therefore, we decided not to 
include a control for coastal cities in the results in Table 7. 
26 See Leamer (2007, 2015) and Hernández-Murillo et al. (2017), among others. 
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cluster 4 includes the Northeast, most of California, and Washington D.C. as did house price 
cluster 4. Employment cluster 5 includes all of house price cluster 5 besides Harrisburg, PA and 
Scranton, PA. The MSAs of employment cluster 6 are all included in house price cluster 6. 
However, employment clusters 1, 2, 3, and 7 are considerably different than their house price 
counterparts. 

[Insert Figure 3 Here] 

The starkest difference between the model with house prices and the model with employment is 
with the timing of the national cycle. Figure 4 displays the posterior probability of each regime 
for the model using MSA-level employment growth that can directly be compared to Figure 2 for 
house prices. Firstly, the national expansion and recession regimes are much more frequent 
during employment cycles than during house price cycles. The national recession timing for 
employment growth correlates strongly with NBER recessions, which is perhaps unsurprising 
given the tight link between economic activity and employment. We note that the national 
employment regime endures well past the end of two of the most recent major recessions of the 
early 2000s and 2007-2009. This finding is evidence of the jobless recoveries as documented by 
others, as described in the literature review section above.  

[Insert Figure 4 Here] 

Finally, Leamer (2015) is correct in his assessment (see the literature review section of this 
paper) that the housing volume cycle coincides well with the business cycle. Our study suggests 
that in addition to a volume cycle, housing also has a price cycle that is distinct from the 
economic business cycle.27 

 

7.  Conclusion 

Using data from the 100 largest MSAs across the United States during the period 1975-2018, we 
investigate the degree of comovement in house prices. We extend the Hamilton and Owyang 
(2012) model of endogenous time-series clustering with a spatial approach to account for direct 
common timing of housing downturns through a Markov-switching framework. 

We compare endogenous clustering models that account for similarity linkages with those that 
did not, and we find that the former fit the data better. Thus, it is important for researchers to 
account for both direct similarity measures of house price movements as well as common 
recession timing when capturing housing cycle comovement. 

We find evidence of 7 unique time series “clusters” of MSAs where house prices tend to move in 
tandem, with most housing price downturns appearing to be idiosyncratic to the cluster level 

 
27 Our finding also differs from Hernandez-Murillo et al. (2017), who  conclude that the national cycle for housing 
starts mimics the NBER recession dates for economic activity. 
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rather than national.28 Only one house price recession, the Great Recession, is widespread 
enough to spread to all MSAs.  

Our findings contrast with the results on the aggregate cycle of housing starts from Hernández-
Murillo et al. (2017), which finds a number of periods of national house price downturns that 
correlate strongly with the business cycle. We reinforce our result by estimating a similar model 
using local employment data to show aggregate house-price cycles are much more dispersed. In 
other words, we find differences between the house price cycle comovement and employment 
comovement across cities, both in recession timing and cluster composition. This might imply a 
need to reconsider the fourth key point made by Leamer (2015, p. 43) that “Homes experience a 
volume cycle, not a price cycle.” We find evidence of both types of housing cycles present for 
U.S. MSAs. 

Returning to the results of our main model, we find much heterogeneity across MSAs in terms of 
their average housing price growth rates under house-price expansions and under contractions.  
This finding is consistent with the finding of much heterogeneity of MSA business cycles by 
Arias et al. (2016) and employment cycles by Owyang et al. (2013). We also find that across 
MSAs, higher house-price growth rates in expansion provide little insight into growth rates in 
contractions.  With respect to the composition of clusters, we find that geographic proximity 
matters for downturns even when distance is accounted for in the similarity matrix.  However, 
geographic proximity is not the only factor influencing the timing of house-price recessions, as 
evidenced by some individual clusters encompassing disparate geographic areas. For instance, 
cluster 4 (consisting of New York City, Boston, Los Angeles, San Diego, San Francisco, and 
others on the east and west coast seaboards) are highly correlated with the house price index, and 
per-capita income; many of these cities are centers of high-tech and two of them (Los Angeles 
and New York City) are hubs for performing arts and television, which are high-paying sectors. 
Industry-wide downturns in these high-paying sectors are likely to hit cluster 4 cities around the 
same time. These common cycles across geographically dispersed cities may encourage people 
with similar preferences to avoid these high-priced housing markets at approximately the same 
time, which could be a contributing factor for these cities’ house price downturns moving in 
tandem. 

Cluster 1, which contains much of Florida, and Phoenix, AZ, is mostly in the southern parts of 
the U.S., and includes enticing locations for retirees who desire warmer climates. In cluster 1, 
these MSAs’ house prices may be moving in similar directions depending on how the 
preferences of these types of migrants change over time. Another interesting feature of cluster 1 
is that it has not had an idiosyncratic housing downturn since the late 1970’s. On the other hand, 
parts of this cluster may have experienced housing cycles that were not due to a national house 

 
28 We should note a number of caveats. The first is that cluster membership is held constant throughout the entire 
sample. Allowing for time-varying cluster membership would capture interesting changes in house price linkages 
between MSAs across time. Second, our framework uses simple fixed transition probabilities. Future work could 
include macroeconomic (or even regional) shocks in a time-varying transition probability framework as in Francis et 
al. (2019) to diagnose the proximate causes of aggregate or regional downturns. 
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price contraction, but those MSA-level downturns were likely not strong enough to bring down 
the entire cluster. A cluster is only deemed “worthy” of being declared in a house price recession 
at any time period if a sufficient number of MSAs experience a bad downturn. This feature of the 
model marginalizes out relatively minor downturns and focuses on national and relatively large 
regional (i.e., cluster) downturns. 

Information about the regime variable is useful for understanding how the timing of the national 
and cluster regimes interact.  We find that the national expansion regime is less persistent than 
the other regimes, with the most likely transition into an idiosyncratic downturn in either cluster 
2 or 3.  The most likely transition from the national downturn regime is into a localized downturn 
for cluster 3.  Meanwhile, clusters 1 and 7 are most likely to transmit a local downturn into a 
national one. 

All of these findings could aid housing investors in their timing of buying and selling if they can 
glean a clearer understanding of which cities can be expected to experience downturns at the 
same time, and why. It might also be helpful for owner-occupiers who are considering migrating 
to a different part of the country and are hoping to understand where they can expect prices to go 
in those cities. Finally, housing researchers can rely on the new innovative methods developed 
here to address similar issues of comovement for other countries or regions of the world. 
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Table 1: Prior Distributions 

Parameter Prior Distribution Hyperparameters 
𝜇𝜇𝑛𝑛 𝑁𝑁(𝑚𝑚𝑛𝑛0,𝜎𝜎𝑛𝑛2𝑀𝑀𝑛𝑛0) 𝑚𝑚𝑛𝑛0 = [1,−2]′, 𝑀𝑀𝑛𝑛0 = 𝐼𝐼2  ∀𝑛𝑛  
𝜎𝜎𝑛𝑛−2 Γ �

𝜐𝜐0
2

,
𝜏𝜏0
2
� 

 𝜐𝜐0 = 0, 𝜏𝜏0 = 0 
𝜌𝜌 𝑁𝑁(𝑟𝑟0,𝑅𝑅0) 𝑟𝑟0 = 0, 𝑅𝑅0 = 1 
𝑃𝑃𝑖𝑖 𝐷𝐷(𝑝𝑝1𝑖𝑖, … ,𝑝𝑝𝐾𝐾+2𝑖𝑖) 𝑝𝑝𝑗𝑗𝑗𝑗 = 1 ∀𝑗𝑗 

 

This table shows the prior distributions for the baseline model. 𝜇𝜇𝑛𝑛 is the vector of average house price growth rate 
parameters for MSA 𝑛𝑛, 𝜎𝜎𝑛𝑛 is the standard deviation of the shock to MSA 𝑛𝑛’s house price growth, 𝜌𝜌 is the weighting 
on the similarity matrix, and 𝑃𝑃 is the aggregate regime transition matrix. 

 

 

 

 

 

Table 2: BIC Model Comparison 

K No Similarity 
Weighting 

Similarity 
Weighting 

2 107884.37 98819.81 
3 107247.93 98573.98 
4 107101.29 98479.84 
5 107021.41 98433.06 
6 107084.61 98413.17 
7 107125.83 98370.62 
8 107164.86 98463.18 
9 109708.73 98703.82 
10 108075.02 99217.13 

 

This table shows the model comparison using Bayesian Information Criterion for various numbers of total clusters 
𝐾𝐾.  The first column shows the model fit across different 𝐾𝐾 for the model with no similarity matrix which is 
identical to the framework of Hamilton and Owyang (2012). The second column shows the model fit across 
different 𝐾𝐾 for our model that includes a similarity matrix. 
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Table 3: Regime-Specific Growth Rates and Variance Parameters: This table shows the posterior mean of the 
MSA-specific model parameters. 𝜇𝜇0 and 𝜇𝜇0 + 𝜇𝜇1are the average house price growth parameters for MSA 𝑛𝑛 in 
expansion and recession, respectively. 𝜎𝜎𝑛𝑛 is the standard deviation of the shock to MSA 𝑛𝑛’s house price growth. 

Pop. Rank Name Abbr. 𝜇𝜇0 𝜇𝜇0 + 𝜇𝜇1 𝜎𝜎 
1 New York-Newark-Jersey City, NY-NJ-PA   NYT 4.14 -0.58 4.72 
2 Los Angeles-Long Beach-Anaheim, CA  LNA 5.38 -1.13 5.53 
3 Chicago-Naperville-Elgin, IL-IN-WI   CHI 2.85 -3.34 3.53 
4 Dallas-Fort Worth-Arlington, TX   DFW 2.70 0.12 3.59 
5 Houston-The Woodlands-Sugar Land, TX   HTN 2.95 -0.88 4.01 
6 Washington-Arlington-Alexandria, DC-VA-MD-WV   WSH 4.34 -0.83 4.39 
7 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  PCW 3.46 -0.69 3.22 
8 Miami-Fort Lauderdale-West Palm Beach, FL   MIM 3.25 -1.25 5.87 
9 Atlanta-Sandy Springs-Roswell, GA   ATL 2.72 -2.97 3.62 
10 Boston-Cambridge-Newton, MA-NH   BOS 4.42 0.13 5.09 
11 San Francisco-Oakland-Hayward, CA   SFC 5.56 -0.42 5.40 
12 Phoenix-Mesa-Scottsdale, AZ   PHX 2.90 -1.26 6.88 
13 Riverside-San Bernardino-Ontario, CA   RSB 4.69 -1.32 6.25 
14 Detroit-Warren-Dearborn, MI   DWL 2.47 -2.60 5.83 
15 Seattle-Tacoma-Bellevue, WA   STW 4.21 -0.69 5.75 
16 Minneapolis-St. Paul-Bloomington, MN-WI   MSP 2.89 -1.44 3.92 
17 San Diego-Carlsbad, CA   SDI 4.65 -0.62 5.76 
18 Tampa-St. Petersburg-Clearwater, FL   TMA 3.19 -1.95 5.15 
19 St. Louis, MO-IL   STL 2.14 -1.16 2.89 
20 Denver-Aurora-Lakewood, CO   DNV 4.26 -0.12 3.99 
21 Baltimore-Columbia-Towson, MD   BTM 3.59 -0.67 3.86 
22 Charlotte-Concord-Gastonia, NC-SC   CGR 3.16 -0.29 2.56 
23 Orlando-Kissimmee-Sanford, FL   ORL 2.98 -3.18 4.92 
24 Portland-Vancouver-Hillsboro, OR-WA   POR 4.11 -0.68 5.04 
25 San Antonio-New Braunfels, TX   SAT 2.45 -0.38 3.47 
26 Pittsburgh, PA   PIT 2.21 0.96 2.79 
27 Sacramento-Roseville-Arden-Arcade, CA   SYO 4.28 -1.34 6.13 
28 Cincinnati, OH-KY-IN   CTI 2.38 -0.46 2.15 
29 Las Vegas-Henderson-Paradise, NV   LSV 3.17 -1.56 7.11 
30 Kansas City, MO-KS   KNC 2.10 -1.08 2.51 
31 Cleveland-Elyria, OH   CVL 2.30 -1.48 2.90 
32 Columbus, OH   COL 2.63 0.40 2.14 
33 Austin-Round Rock, TX   AUS 3.61 0.69 5.12 
34 Indianapolis-Carmel-Anderson, IN   IND 2.27 -0.24 2.69 
35 San Jose-Sunnyvale-Santa Clara, CA   SSC 5.05 0.91 7.21 
36 Nashville-Davidson-Murfreesboro-Franklin, TN   NVL 2.79 -0.09 2.96 
37 Virginia Beach-Norfolk-Newport News, VA-NC MS NFK 2.85 -0.57 4.16 
38 Providence-Warwick, RI-MA   PRI 4.08 -1.36 4.86 
39 Milwaukee-Waukesha-West Allis, WI   MWK 2.52 -0.95 3.69 
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Table 3: Regime-Specific Growth Rates and Variance Parameters: This table shows the posterior mean of the 
MSA-specific model parameters. 𝜇𝜇0 and 𝜇𝜇0 + 𝜇𝜇1are the average house price growth parameters for MSA 𝑛𝑛 in 
expansion and recession, respectively. 𝜎𝜎𝑛𝑛 is the standard deviation of the shock to MSA 𝑛𝑛’s house price growth. 

Pop. Rank Name Abbr. 𝜇𝜇0 𝜇𝜇0 + 𝜇𝜇1 𝜎𝜎 
40 Jacksonville, FL   JAX 2.94 -3.37 4.04 
41 Oklahoma City, OK   OKC 2.44 -1.67 4.05 
42 Memphis, TN-MS-AR   MPH 1.63 -1.53 3.10 
43 Louisville/Jefferson County, KY-IN   LOI 2.49 0.34 2.09 
44 Raleigh, NC   RCY 3.13 -0.01 2.93 
45 Richmond, VA   RCP 2.48 -1.31 2.74 
46 New Orleans-Metairie, LA   NOR 2.74 -1.42 3.72 
47 Hartford-West Hartford-East Hartford, CT   HTF 2.65 -1.47 4.60 
48 Salt Lake City, UT   SLC 3.77 -0.92 4.24 
49 Birmingham-Hoover, AL   BIR 1.85 -1.00 2.58 
50 Buffalo-Cheektowaga-Niagara Falls, NY   BUF 2.17 0.93 3.39 
51 Rochester, NY   ROH 1.84 0.19 2.66 
52 Grand Rapids-Wyoming, MI   GRR 2.15 -1.88 4.30 
53 Tucson, AZ   TUC 2.23 -3.28 5.17 
54 Urban Honolulu, HI  URH 2.88 0.78 9.92 
55 Tulsa, OK   TUL 2.16 -1.31 3.63 
56 Fresno, CA   FRE 3.01 -1.52 6.26 
57 Bridgeport-Stamford-Norwalk, CT   BRG 3.05 -0.93 5.39 
58 Worcester, MA-CT   WST 4.14 -1.17 4.44 
59 Omaha-Council Bluffs, NE-IA   OMA 2.17 0.32 2.80 
60 Albuquerque, NM   ABQ 2.67 -0.81 3.76 
61 Albany-Schenectady-Troy, NY   ALB 2.30 -0.32 4.55 
62 Bakersfield, CA   BAK 2.97 -1.28 6.30 
63 Greenville-Anderson-Mauldin, SC   GNV 2.16 -0.40 2.93 
64 New Haven-Milford, CT   NHM 2.69 -1.67 4.92 
65 Knoxville, TN   KNX 2.20 0.24 2.73 
66 Oxnard-Thousand Oaks-Ventura, CA   VEN 5.04 -1.05 5.88 
67 McAllen-Edinburg-Mission, TX   MCL 1.55 -1.54 3.15 
68 El Paso, TX   ELP 1.68 -0.44 3.66 
69 Allentown-Bethlehem-Easton, PA-NJ   ALL 2.85 -1.30 3.84 
70 Baton Rouge, LA   BTR 2.81 -1.33 4.03 
71 Columbia, SC   CBA 1.55 -1.21 2.65 
72 Dayton, OH   DYT 2.05 -1.13 2.77 
73 North Port-Sarasota-Bradenton, FL   SAR 3.53 -0.86 6.08 
74 Greensboro-High Point, NC   GNS 2.09 -0.68 2.16 
75 Charleston-North Charleston, SC   CRL 3.89 -0.71 4.08 
76 Little Rock-North Little Rock-Conway, AR   LRS 1.69 0.13 3.37 
77 Stockton-Lodi, CA   STO 4.49 -1.59 5.99 
78 Akron, OH   AKR 2.16 -1.00 2.42 
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Table 3: Regime-Specific Growth Rates and Variance Parameters: This table shows the posterior mean of the 
MSA-specific model parameters. 𝜇𝜇0 and 𝜇𝜇0 + 𝜇𝜇1are the average house price growth parameters for MSA 𝑛𝑛 in 
expansion and recession, respectively. 𝜎𝜎𝑛𝑛 is the standard deviation of the shock to MSA 𝑛𝑛’s house price growth. 

Pop. Rank Name Abbr. 𝜇𝜇0 𝜇𝜇0 + 𝜇𝜇1 𝜎𝜎 
79 Cape Coral-Fort Myers, FL   FTM 2.94 -1.14 6.80 
80 Colorado Springs, CO   CLR 2.84 -0.50 3.64 
81 Boise City, ID   BOI 3.04 -1.88 5.94 
82 Syracuse, NY   SYR 1.98 -0.41 3.13 
83 Winston-Salem, NC   WSA 1.86 -0.56 2.11 
84 Lakeland-Winter Haven, FL   LWH 2.21 -4.07 5.04 
85 Wichita, KS   WIC 1.37 -0.02 3.25 
86 Ogden-Clearfield, UT   OCR 2.96 -0.75 3.97 
87 Madison, WI   MDS 3.21 0.10 3.59 
88 Springfield, MA   SPD 3.78 -0.91 3.78 
89 Des Moines-West Des Moines, IA   DEM 2.27 -0.08 3.09 
90 Deltona-Daytona Beach-Ormond Beach, FL   DDO 3.36 -1.66 5.34 
91 Toledo, OH   TOL 1.46 -1.24 2.73 
92 Augusta-Richmond County, GA-SC   AUG 1.44 -1.40 2.69 
93 Provo-Orem, UT   PRV 3.24 -0.94 4.54 
94 Jackson, MS   JAS 1.05 -0.52 4.05 
95 Palm Bay-Melbourne-Titusville, FL   MEL 3.34 -1.63 6.49 
96 Harrisburg-Carlisle, PA   HAR 2.19 0.06 2.15 
97 Scranton-Wilkes-Barre-Hazleton, PA   SWB 2.30 -0.27 3.35 
98 Durham-Chapel Hill, NC   RAD 3.02 0.69 2.45 
99 Youngstown-Warren-Boardman, OH-PA   YNG 1.77 -0.83 2.63 
100 Chattanooga, TN-GA   CHT 1.89 0.29 2.12 
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Table 4: Timing of Housing Cycle Phases 

Start of New Phase Type of Phase Duration (in Quarters) 
4/1/1975 National Expansion 1 
7/1/1975 Cluster 1 Recession 1 
1/1/1976 National Expansion 1 
4/1/1976 Cluster 2 Recession 2 
10/1/1976 National Expansion 1 
1/1/1977 Cluster 1 Recession 1 
4/1/1977 National Expansion 7 
1/1/1979 Cluster 2 Recession 1 
4/1/1979 National Expansion 3 
1/1/1980 Cluster 3 Recession 2 
7/1/1980 National Expansion 2 
1/1/1981 Cluster 3 Recession 4 
1/1/1982 National Expansion 1 
4/1/1982 Cluster 7 Recession 3 
1/1/1983 National Expansion 1 
4/1/1983 Cluster 6 Recession 25 
7/1/1989 National Expansion 2 
1/1/1990 Cluster 4 Recession 31 
10/1/1997 National Expansion 1 
1/1/1998 Cluster 5 Recession 9 
4/1/2000 National Expansion 1 
7/1/2000 Cluster 3 Recession 6 
1/1/2002 National Expansion 1 
4/1/2002 Cluster 3 Recession 15 
1/1/2006 National Expansion 1 
4/1/2006 Cluster 4 Recession 4 
4/1/2007 National Recession 20 
4/1/2012 Cluster 3 Recession 2 
10/1/2012 Cluster 5 Recession 24 

 

This table shows the estimated aggregate regime timing for our baseline model of housing cycles. The first column 
provides the first quarter of the new phase, the second column shows the type of phase that is initialized, and the last 
column shows its duration. 
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Table 5: Transition Probabilities 

    Previous Regime 
    Nat’l Exp. Nat’l Rec. Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

C
ur

re
nt

 R
eg

im
e 

Nat’l Exp. 0.33 0.03 0.48 0.49 0.18 0.05 0.06 0.07 0.34 
Nat’l Rec. 0.03 0.69 0.17 0.15 0.03 0.05 0.03 0.04 0.17 
Cluster 1 0.09 0.03 0.35 - - - - - - 
Cluster 2 0.10 0.03 - 0.36 - - - - - 
Cluster 3 0.15 0.06 - - 0.78 - - - - 
Cluster 4 0.09 0.03 - - - 0.89 - - - 
Cluster 5 0.09 0.04 - - - - 0.91 - - 
Cluster 6 0.06 0.04 - - - - - 0.89 - 
Cluster 7 0.06 0.03 - - - - - - 0.49 

 

This table shows the estimated transition matrix for the aggregate regime variable 𝑧𝑧𝑡𝑡. The columns show the regime 
transition from while the rows show which regime is being transitioned to. Note that ‘-’ indicates that we restrict 
transitions between idiosyncratic cluster recessions, as in Hamilton and Owyang (2012). 
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Table 6: Descriptive Statistics for Cluster Determinants 

 Mean Median Std. Dev. Min Max 
WRLURI 0.083 0.035 0.677 -1.239 1.892 
House price elasticity 1.859 1.638 0.92 0.627 5.453 
Employment 749.396 387.8 1100.178 94.833 8159.833 
Income Per Capita 19587.518 19333.363 3214.785 9518.871 33701.206 
House Price Index 71.7 70.063 12.25 43.153 100.153 

 

This table shows the descriptive statistics for each covariate used in the multinomial logistic regression models. The 
Wharton Land Use Regulatory Index (WRLURI) and the measure of house price elasticity come from Saiz (2010). 
Employment and income per capita are logged and averaged over their values between 1975 – 2018.  
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Table 7: Marginal Effects of Cluster Determinants 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 
WRLURI 0.202 0.146 -0.01 0.157 0.08 -0.205 -0.37 
House price elasticity 0.202 0.014 0.048 -0.544*** -0.008 0.152 0.137 
Latitude -0.508** 0.05 0.034 0.028 0.159 -0.178 0.415 
Longitude 0.067 0.03 0.714*** -0.019 -0.036 -0.662*** -0.096 
Employment 0.328 -0.007 -0.007 0.048 -0.897*** 0.207 0.327 
Income Per Capita -0.239 -0.055 0.03 0.492* 0.19 -0.345* -0.072 
House Price Index -0.084 -0.152 -0.025 0.823*** 0.08 -0.425*** -0.216 

 

This table shows the estimated marginal effects of each covariate from a multinomial logistic regression model. The 
dependent variable is the cluster membership indicators obtained from our time-series clustering model that includes 
a similarity matrix.  The Wharton Land Use Regulatory Index (WRLURI) and the measure of house price elasticity 
come from Saiz (2010). Latitude and longitude are based on the respective MSA centroid. Employment and income 
per capita are logged and averaged over their values between 1975 – 2018. *** p < 0.01; ** p < 0.05, * p < 0.10 
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Figure 1: Cluster Membership Based on House Prices 

 
This figure shows the posterior probability of cluster membership for each MSA in our sample using our baseline 
time-series clustering model with a similarity matrix. In this framework, MSAs cluster together based on similarities 
in house price fluctuations. Gray areas are not included in our sample. 
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Figure 2: Timing of House Price Downturns 

 
This figure shows the posterior probability of regime timing for the aggregate variable 𝑧𝑧𝑡𝑡 using our baseline time-
series clustering model with a similarity matrix. In this framework, MSAs cluster together based on similarities in 
house price fluctuations. Shaded time periods indicate official NBER national recession dates. 
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Figure 3: Cluster Membership Based on Employment 

 
This figure shows the posterior probability of cluster membership for each MSA in our sample using our baseline 
time-series clustering model with a similarity matrix. In this framework, MSAs cluster together based on similarities 
in employment growth fluctuations. Gray areas are not included in our sample. 
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Figure 4: Timing of Employment Downturns 

 
This figure shows the posterior probability of regime timing for the aggregate variable 𝑧𝑧𝑡𝑡 using our baseline time-
series clustering model with a similarity matrix. In this framework, MSAs cluster together based on similarities in 
employment growth fluctuations. Shaded time periods indicate official NBER national recession dates. 
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Appendix: Estimation Details 

In this section we outline the steps for the Gibbs sampler. The steps are quite similar to those 
outlined by Hamilton and Owyang (2012), but we incorporate an extension to the more general 
case of including a similarity weighting matrix. Additionally, the sampler for the cluster 
association matrix 𝐻𝐻 differs from Hamilton and Owyang (2012) in that each entity is only 
allowed to be a member of one cluster whereas they allow for overlapping clusters. 

We partition the parameters and latent variables into six blocks. Each block is drawn from its 
conditional distribution given the other blocks. The six steps are as follows: 

1. Draw 𝜇𝜇|𝑌𝑌,𝑊𝑊,𝜎𝜎,𝜌𝜌,𝐻𝐻,𝑍𝑍 
2. Draw 𝜎𝜎|𝑌𝑌,𝑊𝑊, 𝜇𝜇,𝜌𝜌,𝐻𝐻,𝑍𝑍 
3. Draw 𝜌𝜌|𝑌𝑌,𝑊𝑊, 𝜇𝜇,𝜎𝜎,𝐻𝐻,𝑍𝑍 
4. Draw 𝐻𝐻|𝑌𝑌,𝑊𝑊, 𝜇𝜇,𝜎𝜎,𝜌𝜌,𝑍𝑍 
5. Draw 𝑃𝑃|𝑍𝑍 
6. Draw 𝑍𝑍|𝑌𝑌,𝑊𝑊, 𝜇𝜇,𝜎𝜎,𝜌𝜌,𝐻𝐻,𝑃𝑃 

We define 𝑦𝑦�𝑡𝑡 = [𝐼𝐼 − 𝜌𝜌𝜌𝜌]−1𝑦𝑦𝑡𝑡. 

 

1. Draw 𝝁𝝁|𝒀𝒀,𝑾𝑾,𝝈𝝈,𝝆𝝆,𝑯𝑯,𝒁𝒁 

We assume a normal prior for the growth rate parameters 𝜇𝜇𝑛𝑛 = [𝜇𝜇𝑛𝑛0, 𝜇𝜇𝑛𝑛1]′: 

𝜇𝜇𝑛𝑛~ 𝑁𝑁(𝑚𝑚𝑛𝑛0,𝜎𝜎𝑛𝑛2𝑀𝑀𝑛𝑛0). 

The posterior distribution is then given by 𝜇𝜇𝑛𝑛~ 𝑁𝑁(𝑚𝑚𝑛𝑛1,𝜎𝜎𝑛𝑛2𝑀𝑀𝑛𝑛1) where: 

𝑚𝑚𝑛𝑛1 = 𝑀𝑀𝑛𝑛1�𝑀𝑀𝑛𝑛0
−1𝑚𝑚𝑛𝑛0 + 𝑋𝑋𝑛𝑛′ 𝑌𝑌𝑛𝑛��,  

𝑀𝑀𝑛𝑛1 = (𝑀𝑀𝑛𝑛0
−1 + 𝑋𝑋𝑛𝑛′ 𝑋𝑋𝑛𝑛)−1,  

𝑋𝑋𝑛𝑛 = [𝑋𝑋𝑛𝑛1′, … ,𝑋𝑋𝑛𝑛𝑛𝑛′]′, 𝑋𝑋𝑛𝑛𝑛𝑛 = [1 ℎ𝑛𝑛(𝑧𝑧𝑡𝑡)]’, and 𝑌𝑌�𝑛𝑛 = [𝑦𝑦�1𝑛𝑛, … ,𝑦𝑦�𝑇𝑇𝑇𝑇]′   

 

2.  Draw 𝝈𝝈|𝒀𝒀,𝑾𝑾,𝝁𝝁,𝝆𝝆,𝑯𝑯,𝒁𝒁 

We assume an inverse-gamma prior for each entity’s variance parameter: 

𝜎𝜎𝑛𝑛−2~ Γ (
𝜐𝜐0
2

,
𝜏𝜏0
2

) 

The posterior distribution for 𝜎𝜎𝑛𝑛2 is given by: 

𝜎𝜎𝑛𝑛−2~ Γ �
𝜐𝜐0 + 𝑇𝑇

2
,
𝜏𝜏0 + 𝜏𝜏1

2
�, 

where: 
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𝜏𝜏1 = �[𝑦𝑦�𝑡𝑡𝑡𝑡 − 𝜇𝜇𝑛𝑛′Χ𝑛𝑛𝑛𝑛]2
𝑇𝑇

𝑖𝑖=1

 

3. Draw 𝝆𝝆|𝒀𝒀,𝑾𝑾,𝝁𝝁,𝝈𝝈,𝑯𝑯,𝒁𝒁 

We define 𝑦𝑦� = [𝑦𝑦�1′ , … , 𝑦𝑦�𝑇𝑇′]′ where: 

𝑦𝑦�𝑡𝑡 = [𝑦𝑦�𝑡𝑡1, … ,  𝑦𝑦�𝑡𝑡𝑡𝑡]′ 

And: 

𝑦𝑦�𝑡𝑡𝑡𝑡 =
𝑦𝑦𝑡𝑡𝑡𝑡 − 𝜇𝜇𝑛𝑛 ′ 𝑋𝑋𝑛𝑛𝑛𝑛

𝜎𝜎𝑛𝑛
 

Additionally, we define: 

𝑋̈𝑋 = �
𝜌𝜌𝜌𝜌𝑦̈𝑦1
⋮

𝜌𝜌𝜌𝜌𝑦̈𝑦𝑇𝑇
� 

Where: 
𝑦̈𝑦𝑡𝑡 = [𝑦̈𝑦𝑡𝑡1, … , 𝑦̈𝑦𝑡𝑡𝑡𝑡]′ 

And: 

𝑦̈𝑦𝑡𝑡𝑡𝑡 =
𝑦𝑦𝑡𝑡𝑡𝑡
𝜎𝜎𝑛𝑛

 

Assuming a normal prior for 𝜌𝜌: 

𝜌𝜌~𝑁𝑁(𝑟𝑟0,𝑅𝑅0), 

The posterior distribution is: 

𝜌𝜌~𝑁𝑁(𝑟𝑟1,𝑅𝑅1), 

Where: 

𝑟𝑟1 = 𝑅𝑅1(𝑅𝑅0−1𝑟𝑟0 + 𝑋̈𝑋′𝑦𝑦�), 

𝑅𝑅1 = (𝑅𝑅0−1 + 𝑥̈𝑥′𝑥̈𝑥)−1 

4. Draw 𝑯𝑯|𝒀𝒀,𝑾𝑾,𝝁𝝁,𝝈𝝈,𝝆𝝆,𝒁𝒁 

The cluster membership indicators h are drawn entity-by-entity. In contrast to Hamilton and 
Owyang (2012), we restrict each MSA to be a member of only one cluster as in Hernández-
Murillo et al. (2017) and Francis et al. (2019).  

We first calculate the conditional likelihood for country n to be a member of each cluster 𝑘𝑘 =
1, … ,𝐾𝐾: 

𝑝𝑝(𝑌𝑌𝑛𝑛|ℎ𝑛𝑛𝑛𝑛 = 1,𝑊𝑊, 𝜇𝜇𝑛𝑛,𝜎𝜎𝑛𝑛,𝜌𝜌,𝑍𝑍) 
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We then combine this conditional likelihood with a prior distribution 𝑝𝑝(ℎ𝑛𝑛𝑛𝑛 = 1) to get the 
posterior:  

𝑃𝑃𝑟𝑟(ℎ𝑛𝑛𝑛𝑛 = 1|𝑌𝑌,𝑊𝑊, 𝜇𝜇𝑛𝑛,𝜎𝜎𝑛𝑛,𝜌𝜌,𝑍𝑍) = 𝑝𝑝(𝑌𝑌𝑛𝑛|ℎ𝑛𝑛𝑛𝑛 = 1,𝑊𝑊, 𝜇𝜇𝑛𝑛,𝜎𝜎𝑛𝑛,𝜌𝜌,𝑍𝑍)𝑝𝑝(ℎ𝑛𝑛𝑛𝑛 = 1) 

�𝑝𝑝�𝑌𝑌𝑛𝑛�ℎ𝑛𝑛𝑛𝑛 = 1,𝑊𝑊, 𝜇𝜇𝑛𝑛,𝜎𝜎𝑛𝑛 ,𝜌𝜌,𝑍𝑍�𝑝𝑝(ℎ𝑛𝑛𝑛𝑛 = 1)
𝐾𝐾

𝑗𝑗=1

 

We assume a uniform prior distribution for cluster membership: 𝑝𝑝(ℎ𝑛𝑛𝑛𝑛 = 1) = 1
𝐾𝐾

 

5. Draw 𝑷𝑷|𝒁𝒁 

We draw the transition matrix P similar to the step outlined by Hamilton and Owyang (2012). 
Since the columns 𝑃𝑃𝑖𝑖  of P are independent, we assume a Dirichlet prior distribution for 𝑃𝑃𝑖𝑖: 

𝑃𝑃𝑖𝑖~𝐷𝐷(𝑝𝑝1𝑖𝑖,𝑝𝑝2𝑖𝑖, … ,𝑝𝑝𝐾𝐾+2𝑖𝑖) 

With restrictions to ensure zero transition probability between idiosyncratic regimes. 

Thus, the posterior distribution for 𝑃𝑃𝑖𝑖 is given by: 

𝑃𝑃𝑖𝑖~𝐷𝐷(𝑝𝑝1𝑖𝑖 + 𝑁𝑁1𝑖𝑖(𝑍𝑍),𝑝𝑝2𝑖𝑖 + 𝑁𝑁2𝑖𝑖(𝑍𝑍), … ,𝑝𝑝𝐾𝐾+2𝑖𝑖 + 𝑁𝑁𝐾𝐾+2𝑖𝑖(𝑍𝑍)) 

Where 𝑁𝑁𝑗𝑗𝑗𝑗 counts the number of transitions in Z from regime i to regime j.  

6. Draw 𝒁𝒁|𝒀𝒀,𝑾𝑾,𝝁𝝁,𝝈𝝈,𝝆𝝆,𝑯𝑯,𝑷𝑷 

Similar to Francis et al. (2019), we use the multi-regime filter outlined by Hamilton (1989). We 
first calculate the filter density forward for 𝑡𝑡 = 1, … ,𝑇𝑇: 𝑝𝑝(𝑍𝑍𝑡𝑡|𝑌𝑌𝑡𝑡,𝑊𝑊, 𝜇𝜇,𝜎𝜎,𝜌𝜌,𝐻𝐻,𝑃𝑃).  

We then draw 𝑍𝑍𝑡𝑡−1, … ,𝑍𝑍, recursively by updating the forward filter densities:  

𝑝𝑝(𝑍𝑍𝑡𝑡|𝑍𝑍𝑡𝑡+1,𝑌𝑌𝑇𝑇 ,𝑊𝑊, 𝜇𝜇,𝜎𝜎,𝜌𝜌,𝐻𝐻,𝑃𝑃) =
𝑃𝑃𝑍𝑍𝑡𝑡+1𝑍𝑍𝑡𝑡 𝑝𝑝(𝑍𝑍𝑡𝑡|𝑌𝑌𝑡𝑡,𝑊𝑊, 𝜇𝜇,𝜎𝜎, 𝜌𝜌,𝐻𝐻,𝑃𝑃)

∑ 𝑃𝑃𝑍𝑍𝑡𝑡+1𝑘𝑘 𝑝𝑝(𝑍𝑍𝑡𝑡 = 𝑘𝑘|𝑌𝑌𝑡𝑡,𝑊𝑊, 𝜇𝜇,𝜎𝜎, 𝜌𝜌,𝐻𝐻,𝑃𝑃)𝐾𝐾+2
𝑘𝑘=1

 

Where 𝑝𝑝𝑗𝑗𝑗𝑗 are the transition probabilities from 𝑃𝑃.  

 


