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Abstract

An understanding of the spatial variation in the impacts of living near reservoirs, dams, and undevel-

opable land is important in explaining residential property values. While there is a body of literature

on the e�ects of proximity to dams and reservoirs on housing prices, little known research attempts to

determine if various individual houses are impacted di�erently depending on their locations and years

of sale. We examine properties in Barkhamstead, Connecticut that sold between 2001 and 2015. We

utilize non-parametric regression techniques to allow for the possibility that the major reservoirs, dams

and undevelopable land areas, a�ect various house prices di�erently, depending on their locations and

when they are sold. We �nd that for the most part, proximity to dams leads to lower housing sale

prices, with the magnitudes of these e�ects varying across geographic space and over time. A di�erence-

in-di�erences approach indicates that the willingness to pay for distance from the dams decreased after

the most recent housing crisis. In general, undevelopable land area is valued as an amenity in this rural

town. The signs of the e�ects of proximity to the reservoir vary � some properties bene�t from proxim-

ity while others experience lower sale prices when they are closer to the reservoir. We also control for

other key housing characteristics and environmental variables, such as elevation, numbers of bedrooms

and baths, age of properties, year of sale, square footage and acreage, and others. We generate maps

of the signs and magnitudes of the coe�cients for several of the key variables to illustrate the spatial

heterogeneity.
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1 Introduction

Proximity to reservoirs, wetlands, and dams can have both positive and negative impacts on

house prices. For instance, wetlands and reservoirs can be considered �amenities� due to open

space, wildlife, and aesthetics/views. On the other hand, wetlands locations can be restrictive to

future development, which could be a detriment to a potential buyer who may want to expand

a property on a wetland or near a reservoir. Also, there can be a higher risk of �ooding near

dams, reservoirs, and wetlands, which can be capitalized into house prices and lead to lower

property values. An understanding of the potential positive and negative impacts of living near

reservoirs, dams, wetlands and undevelopable land due to relatively steep slope, is important in

justifying the operation of water (and possibly other) utilities near residential properties.

While there is a body of literature on the e�ects of proximity to dams and reservoirs on

housing prices, little known research attempts to determine if various individual houses are

impacted di�erently depending on their locations and years of sale. Also, relatively little is

known about how proximity to these amenities a�ects house prices di�erently during a �boom�

period versus a �bust� period. We examine properties in Barkhamstead, Connecticut that sold

between 2001 and 2015. This covers a period of a signi�cant housing �boom� (2002-2009) and

also a �bust� (the housing crisis which began in 2009).

The reservoir in Barkhamstead supplies much of central Connecticut with its drinking water.

We utilize non-parametric regression techniques (Geographically Weighted Regressions) to allow

for the possibility that the major reservoir and dams in Barkhamstead a�ect various house prices

di�erently, depending on their locations and when they are sold. We follow the approach of Saiz

(2010) and generate estimates of land with su�ciently steep slopes that inhibit development.

We also estimate a set of partial linear (i.e., semi-parametric) models. We �nd that for the most

part, proximity to dams leads to lower housing sale prices, with the magnitudes of these e�ects

varying across geographic space and over time. Properties with higher census block steep slope

land area tend to sell for higher prices, implying this type of land is a amenity in this rural

town. Our di�erence-in-di�erences approach in the context of a partial linear model leads us to
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conclude that the housing crisis caused proximity to dams to be valued less after 2009. In other

words, these lower e�ects due to proximity to dams are magni�ed in the post-2009 (housing

crisis) period.

The signs of the e�ects of proximity to the reservoir vary � some properties bene�t from

proximity while others experience lower sale prices when they are closer to the reservoir. We

also control for other key housing characteristics and environmental variables, such as elevation,

numbers of bedrooms and baths, age of properties, year of sale, square footage and acreage, and

others. We generate maps of the signs and magnitudes of the coe�cients for several of the key

variables to illustrate the heterogeneity (e.g., see Figures 2 and 3).

The remainder of this paper proceeds as follows. First, we review the literature on proximity

to wetlands, dams, and water bodies. Then we describe our empirical approaches, followed by

a discussion of the data. After presenting our results, we conclude with a summary of the key

�ndings of the paper.

1.1 Literature Review

There are several studies on the relationships between housing prices and proximity to wetlands,

water, and/or dams. However, no known research considers all of these e�ects together with

the impacts of before and after a housing crisis, in a semi-parametric estimation framework.

Cohen et al (2015) consider wetlands and water impacts, but they ignore the important

aspects of dams and elevation, and they examine a shorter sample period that stops before the

beginning of the housing crisis. They �nd that various properties are a�ected di�erently by

proximity to wetlands and water.

Other recent studies include Atreya et al (2016), who �nd a di�erent e�ect of distance to the

coastline in Texas, depending on �ood risk. Ironically, they also �nd that the willingness to pay

for avoiding �ood risk is higher for properties that are further away from the shore. However,

they do not use a semi-parametric estimation framework to arrive at these conclusions.

Rouwendal (2016) examine the e�ects of proximity to water, using a sample of identical

Dutch houses. This simpli�es the hedonic housing problem because it is not necessary to
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�control� for di�erences in characteristics, other than proximity to water. They �nd that in this

context, the potential bene�ts from water proximity are smaller, possibly due to �speci�cation

bias� that can occur in the typical hedonic model.

Lewis et al (2008) examine willingness to pay for removal of a dam in Maine. Their approach

is rich in the sense that their examination of house prices pre- versus post- dam removal, for

various distances from the dam, enables the identi�cation of the bene�ts of living far from the

dam.

Bohlen and Lewis (2009) study another river and dam in Maine, and in this instance, they

�nd a 16% premium for living closer to the river. They also �nd a premium for living closer to

the dam, although the level of statistical signi�cance is lower for this variable. These con�icting

�ndings of the impacts of a dam on housing prices, for two studies of di�erent dams in the

state of Maine, imply that a semi-parametric approach could be fruitful in our case of dams in

Barkhamstead, Connecticut.

Saiz (2010) is a more broad study, at the U.S. Metropolitan Statistical Area (MSA) level, of

the impacts of water bodies and elevation on the amount of developable land in each MSA. He

�nds that development is detrimentally a�ected in MSA's with greater amounts of �steep-slope

terrain�. He also �nds that prices are endogenous, which is not surprising given the relative

scarcity of land in many densely developed urban areas.

To further explore these issues and the importance of considering spatial heterogeneity, we

control for elevation in a non-parametric manner in our analysis. Our di�erence-in-di�erences

approach of impacts of distance to dams, before vs. after the housing crisis, is an identi�cation

strategy that leads to our key �nding of the dis-amenities from proximity to dams being pro-

nounced after the most recent housing crisis. We also �nd that properties in census block groups

with greater steep-slope terrain sell for higher prices, which implies the seep-slope terrain is an

amenity in this rural setting.
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2 Approach

Our analysis of the impacts of water body, wetlands and dams on housing prices is based on a

hedonic housing price model. A typical hedonic model with linear regression function takes the

following form:

Yi = Xiβ + ui, i = 1, · · · , N (1)

where Yi is the logarithm of sale price and Xi is a vector of house characteristic variables,

including number of baths, bedrooms, square footage, acres, as well as neighborhood variables

such as physical locations (longitude and latitude), logarithm of elevations, logarithm of distance

to dam, water body and reservoir.

2.1 Locally weighted regression (LWR)

In addition to the ordinary least squares (OLS) estimation of the model, we use a non-parametric

approach - locally weighted regressions (LWR), also commonly referred to as Geographically

Weighted Regression (GWR) - to approximate the regression function, considering the fact that

the data are prices of houses at �xed points with spatial coordinates and years of sale. In a

LWR model, the spatial coordinates of the data are used to calculate distances that are used

in a kernel function to determine weights of spatial dependence between observations. Time of

sales are used similarly to determine weights of time dependence between observations. The

hedonic house price function is assumed to take the following form:

Y = Xiβ(si, ti) + ui, i = 1, · · · , N

where si is the geographic location variables of observation i and ti is the time of sale on

observation i, β(si, ti) is a column vector of regression coe�cients, each of which is an unknown

function of si and ti. The coe�cient vector at location si = s and at time ti = t , denoted by

β(si = s, ti = t) is calculated by minimizing the following objective function with respect to a
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and b,
N∑
i=1

(yi − a− b′xi))2K
(
di
h

)
K
(
τi
h

)
(2)

where K(·) is a kernel function that determines the weight that observation i receives in the

regression; di and τi are the distance between observation i and location (s, t) in geographic

space and in time space, respectively;1 and h is the bandwidth. The Gaussian kernel function is

used to calculate the weight assigned to each observation, based on its distance from the target

point, both in geographic location and time/year.2Many researchers have shown that choice of

kernel function has little e�ect on the results. (See, e.g. McMillen and Redfearn, 2010). The

performance of kernel estimator is much more sensitive to the choice of bandwidth, h . Given

in the data sets that the houses are located densely in some areas and sparse in other areas,

a �xed bandwidth would lead to over-smoothing in areas where many observations are present

and under-smoothing in areas with sparse data. Following McMillen and Redfearn (2010) we

use a �Kth nearest neighbor� (K-nn) approach in calculating the bandwidth. For a target point

we chose a bandwidth to include a �xed percentage of the sample into the local averaging.3

Following the method suggested in McMillen and RedFearn (2010), we apply a version of an

F-test on the signi�cance of each explanatory variable in f(zi). Let L be the N by N matrix

so that Ỹ = LỸ + ε, where Ỹ = Y −X · β̂ is the vector of the dependent variable and ε is the

regression residuals in the GWR regression. De�ne d1 = tr(L), d2 = tr(L′L) and κ = 2d1 − d2.

Then the F-test is simply:

(Ỹ ′RrỸ − Ỹ ′RaỸ )/(κa − κr)
(Ỹ ′RaY )/(n− κa)

∼ F (κa − κr, n− κa)

where the subscript a and r are used to indicate whether the quantity is calculated from the

1 The distances di and τi are normalized with the standard deviation of {di}Ni=1 and {τi}Ni=1,.
2 The kernel function on time assigns positive weight only for τi ≤ 0 and assigns 0 weight for τi > 0, i.e. only

those observations that precede the observation at (s, t) in time get positive weights.
3 We use two window sizes: 50 percent and 100 percent. With a Gaussian kernel function (Standard normal

density function) the bandwidth are chosen to include a speci�ed percentage (25 percent or 100 percent) of the
sample in the window - two standard deviations of the target point. Sample points outside of this window get
near-zero weights and are essentially ignored in the averaging. One could potentially use di�erent thresholds in
bandwidth selection, e.g. three or four standard deviations, but this will not change the results signi�cantly.
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restricted model (null) or the alternative model. To test the signi�cance of each variable, the

above F-statistics can be calculated as with that variable dropped from the model. The P-values

from these tests are probabilities of the null hypothesis that the coe�cients equal zero. In this

sense this F-test indicates whether an explanatory variable in the non-parametric component

of the regression adds any explanatory power to the model.

2.2 Partial Linear Regression

While the OLS model imposes too many restrictions on how X a�ects Y , the locally weighted

regression might gives too much degrees of freedom in each point of estimation (i.e. leads to

too few observation being used in each point estimation), especially with a relatively small data

set. As a compromise in modeling the hedonic price function we also take a semi-parametric

approach - a partially linear model - in estimating the average e�ect of a single variable, say X,

of our interest. The partial linear model takes the following form:

Yi = Xiβ + f(Zi) + ui, i = 1, · · · , N ; (3)

where Xi is of dimension one, β is a unknown parameter that is of our main interest, Zi is of

dimension d × 1, f(·) is a smooth but otherwise unknown function. The advantage of using

a semi-parametric model over a fully non-parametric one is for convenience in interpretation

and the faster converging rate, the later of which is particularly important given our sample

size. The estimate of β provides an estimate of the conditional expectation of Yi given Xi after

controlling in a general, non-parametric way for the e�ects of all other variables.

Following Robinson (1988), by taking the expectation of (3) conditional on variables in the

non-parametric component, zit, then subtracting it from (3) we have

Yi − E(Yi|Zi) = [Xi − E(Xi|Zi)]
′
β + ui (4)

If we use the following notations: ∇i = Yi −E(Yi|Zi) , Vi = Xi −E(Xi|Zi) , then we can write
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the above equation as

∇i = Viβ + ui (5)

Then a simple OLS regression of ∇ on V will give a consistent estimate of β, assuming E(Yi|Zi)

and E(Xi|Zi) are known. In practice, these conditional expectations can be approximated using

locally weighted regression (LWR) following McMillen and Redfearn (2010). We follow Cohen,

Osleeb and Yang (2014) by rotating each independent variables in the parametric part of the

model, X, and leaving the rest of the independent variables in the non-parametric component

of the model, f(z). With this approach we can obtain an estimate of the marginal impact of

each individual factor on the housing price after controlling for the e�ects of all other variables

in a non-parametric way.

One interesting question to ask regarding the real estate market is that how the economic

downturn, like the great recession in 2008-2009, a�ects the housing prices. More speci�cally,

we would like to understand if there is a signi�cant change in how home buyers value amenities

di�erently, before and after the economic downturn in 2008/2009. In Figure 1, the coe�cients -

estimated from the non-parametric LWR model - on variables measuring the distances to water

body, wet land or dam are plotted over the year of sales. These plots suggest that the marginal

impact of closeness to water/dams changed during 2008-2009. To further test whether these

changes are statistically signi�cant, we apply a F-test in the context of the partial linear model

in section 4. In model (3) , we assume that β , which captures the marginal e�ects of variable X,

applies to all the observations in our sample. It is straight forward to test whether the marginal

e�ects from variables like distance to water bodies on housing prices change signi�cantly before

and after 2008/2009. Our data spans two very di�erent periods. Up to 2009, denoted by

period 1, the housing market was booming and prices had been rising steadily. The recession of

2008/2009 marked a transition in the housing market (denoted by period 2), with low demand

and over supply, and dropping prices. Denote a dummy variable that takes value of 1 only

for observations prior to year 2009 as D1 and a dummy variable that takes value of 1only for

observations in 2009 and later as D2 , an unrestricted model that allows the coe�cients to be
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di�erent in the two periods is :

Yi = D1
iXiβ1 +D2

iXiβ2 + f(Zi) + ui, i = 1, · · · , N. (6)

The model (6) can be estimated following the same steps described above for the partial linear

model. Given that the estimators for β1and β2 , denoted as b1, b2, are well behaved we can test

the hypothesis: H0 : β1 = β2using the following F-statistics:

F (1, n− 2) =
[
(b1 − b2)2R′

[
s2(X ′iD

′
1D2X1)

−1R
]−1]

,

where R = [1,−1] and s2 = e′e/(n− 2) with e being regression residual vector from regression

(3). The tests are done on each individual independent variables with two di�erent bandwidth:

50% and 25%.

2.3 Di�erence-in-di�erences Model

One model that is particularly helpful in identifying how the impact of dams have changed

before and after the economic recession is known as the �Di�erence-in-di�erence� (DD) model.

Following Kiel and McClain (1995), the �di�erence-in-di�erence� model is as the following:

Yi = β0 +D09iβ1 + nearDMiβ2 +D09i ∗ nearDMiβ3 + f(Zi) + ui, i = 1, · · · , N. (7)

where D09iis the dummy variable that takes value 1 only for observations in 2009 and later

(post recession observations), nearDMi is the dummy variable that takes value 1 for houses lo-

cated within a certain distance (10% of the the maximum distance in the area) from the target

(the nearest water body, wet land or dam), Ziinclude other control variables. As described in

Woodridge (2013), the coe�cient β3 has become known as the �di�erence-in-di�erence estima-

tor�. With our Barkhamsted housing data set, β3 is an estimate of the change in the e�ect of a
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dam on home values, after the recession, i.e.

β3 = (Ȳpos,nr − Ȳpos,fr)− (Ȳpre09,nr − Ȳpre,fr)

where Ȳ.,. is average home prices, �nr� stands for �near the dam� - homes located within one

tens of the maximum distance among all homes, �fr� stands for �farther away from the dam�,

�pre09� stands for �before 2009� (observations in 2000-2008), �pos09� stands for �observations

from 2009 or later�. In other words, β3 is the di�erence after recession in the average di�erence

of housing prices in two di�erent locations, near the dam versus further away from the dam.

We �rst estimated model (7) by ignoring f(·), i.e. by OLS with only dummies variables

but no control variables; As described Woodridge (2013), β0 is the average price of a home not

near the dam. β1 is the change in all housing prices in Barkhamsted caused by the recession in

2008-2009. The coe�cient β2 captures the location e�ect (whether being close to the dam or

not) on housing prices without considering the e�ect from the housing crisis. The parameter of

our interest is on the interaction term D09i∗nearDMi, β3 , measures changes in how consumers

value a house's proximity to the dam, caused by the housing crisis.

Then we estimate the above model (7) by including various housing characteristics in Zi and

f(Zi) is assumed to be a linear function of control variables. The reason for doing this is that

the houses selling before the housing crisis might have been systematically di�erent than those

selling after the housing crisis. This make it important to control for characteristics that might

caused the di�erence.

At last, to render some �exibility on how those other characteristics might a�ect house

prices, we assume that f(Zi) in model (7) is a unknown smooth function and estimate it non-

parametrically. This model is a variation of the �partial linear model� in (3). The partial linear

model allows us to estimate the �di�erence-in-di�erence� e�ect directly while controlling for the

e�ects from other house characteristics in a �exible fashion. The procedure to estimate this

non-parametric partial linear model is described in section 3. We use a window size of 50% in

estimating the non-parametric components.
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3 Data

Barkhamsted is a town in Litch�eld County, Connecticut and contains two villages, Pleasant

Valley and Riverton. According to the United States Census Bureau, the town has a total area

of 38.8 square miles (100 km2), of which, 36.2 square miles (94 km2) of it is land and 2.6 square

miles (6.7 km2) of it (6.72%) is water. A high percentage of the land in the town is owned by the

State of Connecticut as state forest and by the Metropolitan District Commission as watershed

land. Major bodies of water include the Barkhamsted Reservoir, Lake McDonough, and the

Farmington River. The Barkhamsted Assessor Department provided the information regarding

non-locational characteristics of the single-family houses sold between 2000 and 2015, including:

sales price (nominal), year built, year sold, acreage, square footage, number of bedrooms and

number of bathrooms. The variables included home address, living area square footage, the

age of the property in years, and the year of the sale. Also, data on the number of bedrooms,

number of bathrooms, the actual sale price (USD), and the number of acres were compiled.

Among all of the single family properties in Barkhamsted, there were 495 houses sold in the

period 2000-2015. Following Cohen, Cromley and Banach (2014), we use dummy variables to

mark if the property was located either in Riverton or Pleasant Valley, the two of the three

villages in Barkhamsted. Properties in neither of these areas are indicated to be in an �Other�

category.

The locations of the single-family houses sold between 2000 and 2015 were identi�ed in a two-

step process. First, the location of the houses were georeferenced using the addresses provided

the Barkhamsted Assessor Department via the mapping function of the Google Fusion Table

software (tables.googlelabs.com). Second, the accuracy of the georeferenced data was veri�ed

using the MapGeo Barkhamsted GIS System (barkhamstedct.mapgeo.io) in order to ensure that

the points representing the locations of the single-family houses sold between 2000 and 2015

were positioned atop (or as close to) the center of the appropriate house. The boundaries of the

Riverton and Pleasant Valley neighborhoods, water bodies, wetlands and Barkhamsted reservoir

were obtained from Cohen et al. (2014). Maps of elevation, slope, and the location of dams in
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Barkhamsted were obtained from the Connecticut Department of Energy and Environmental

Protection, or CT DEEP (www.ct.gov/deep/gisdata). Data utilized to calculate the amount of

undevelopable land per census block (following the approach for the MSA-level by Saiz, 2010)

include the CT DEEP slope map and 2010 United States Census block geography.

Descriptive statistics and a description of the variables are presented in Table 1. The average

home sold for about US$247,642; there was no outwardly discernible pattern to the spatial dis-

tribution of sales price for individual homes. The highest and lowest quantiles were distributed

in all parts of the town in proximity to one another. The average home also has about 1,800

square feet of living area, on a 3.2 acre property, about 850 feet above sea level, about 780 feet

from the nearest water body, about 890 feet from the nearest wetlands and 4133 feet from the

nearest dam. (see Figure 2 for a map with the distances of each house to the nearest dam).

Because water features are not uniformly distributed across the town, homes that are near water

features are clustered in di�erent areas and homes that are distant from water are clustered in

other areas.

4 Results

Parameter estimates for the di�erent model speci�cations described above are presented in

Tables 2 - 7. The OLS results estimated from model (1) are given in Table 2. The impact

from basic house characteristic variables, including property acreage, house age, square footage,

number of bedrooms and bathrooms, are consistent with expectations and they are statistically

signi�cant. For example, the parameter estimate on the log of the number of acres is 0.0068,

implying that every 1 percent increase in lot size drive up the house sale price by 0.0068 percent.

The parameter estimate on the log of age is −0.001, implying that sale prices fell by about 0.001

percent for every 1 percent increase in a property's age. In addition, the parameter estimates

on the year-dummies are all positive and signi�cant,4 implying that the sale price was going up

over the time period under study, despite the real estate �bust� experienced in some regions of

4 The coe�cients on these time dummies are not included in the table to make it consise but they are available
upon request.
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the U.S. that started in 2007 - 2008. Meanwhile, houses in Riverton and Pleasantvalley sold for

signi�cantly more than houses in the �other� neighborhood. This is consistent with a previous

study by Cohen, Cromley and Banch (2014). The parameter estimate on undevelopable land in

the census block group is positive and signi�cant, implying undevelopable land is an amenity in

this rural town. In contrast, the parameter estimates on geographic measurement of a house,

including elevation, distance to water body, wetland or dam, are all insigni�cant. This makes

it di�cult to attribute changes in house prices to any of these geographic variables. For exam-

ple, while the parameter estimate on distance to nearest water bodies is negative, one cannot

infer that on average houses closer to water body sold for more than houses that were further

from their nearest water body because that estimate is highly insigni�cant based on this linear

model. However, the linearity assumption in OLS might be a over simpli�cation and miss some

important aspects of the data set. First, many of the characteristic variables and geographical

variables might impact the sale price in a nonlinear fashion and this would be masked by a OLS

model. Using distance to the nearest water body as an example, while a 10% increase in the dis-

tance from to water body might have a substantial impact on price of houses within immediate

vicinity of a lake, the same increase might not a�ect price of houses at all that are located further

away from the lake. Second, as common in real estate studies, spatial dependence, as well as

dependence across time period, might play an important role in determining a house's market

value. McMillen and Redfearn (2010) discuss how with LWR the �combination of functional

form �exibility and spatially varying coe�cients helps to reduce spatial auto-correlation without

imposing arbitrary contiguity matrices or distributional assumptions on the data�. While LWR

accounts for spatial dependence, we, in this paper, extend it to allow coe�cients varying across

both space and time periods. See, for instance, an similar application of LWR in Cohen, Osleeb

and Yang, (2014).

Parameter estimates from LWR, with two di�erent bandwidths of 50% and 100%, are sum-

marized in Table 3. Note that as a non-parametric model, actual parameter estimate values

change across observations. Table 3 presents only the means of these estimates. Meanwhile,

unlike in a parametric model, it is well known that a non-parametric estimate is biased in �nite
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samples, and the inferences are not possible in a usual manner. As an alternative, following

McMillen and Redfearn (2010), we apply a set of F-tests for the signi�cance of each of the

explanatory variables. Based on these results, the means of coe�cients for most characteristic

variables, like a house's age, acreage, square footage, number of bathrooms, are consistent with

the OLS model and signi�cant, with the exception of the coe�cient on the number of bedrooms

being insigni�cant. The indevelopable land coe�cient is once again positive and signi�cant.

On the other hand, parameter estimates for geographic measurements, including distances to

wetlands, water body or dams, as well as variables on elevation, on the Pleasant Valley or

Riverton neighborhood dummies, are mostly insigni�cant, which again makes it di�cult to tell

what the model implies in regard to the impact of these variables on the house prices. Reducing

the bandwidth from 100% to 50% generally reduces P-value of the F-tests, but not enough to

make these variables statistically signi�cant. This issue might be attributed to the fact that

non-parametric models typically require a large sample size in order to show consistency. The

required sample size increases exponentially with the number of explanatory variables, which is

known as the �curse of dimensionality�. Given that our data set has only 495 observations but

13 explanatory variables, these results should not be unexpected. It actually provides another

motivation for a semi-parametric model speci�cation, as in the partial linear model.

Table 4 shows the partial linear model parameter estimates, with two di�erent bandwidth of

50% and 100%. One advantage of this model is that the parameter estimate from the linear part

of the model is well behaved statistically, i.e. converges at rate of square root of N , the same as

that of a parametric model. Therefore tests of signi�cance can be done based on the standard

normal distribution. An immediate observation from the results in Table 4, as a contrast to the

OLS or LWR results, is that all coe�cients are highly signi�cant. We argue that the smaller

bandwidth is preferred in our partial linear model, because with the bigger window size (100%)

we e�ectively used more observations in estimating a local e�ect, making it more similar to a

parametric model. A smaller window size enables us to better capture the local e�ects presented

in the data. For this reason, our interpretation will be focused on results obtained with smaller

window size (50%).
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Parameter estimates on house characteristic variables, including a house's age, acreage,

square footage, number of bedrooms and bathrooms, are consistent with previous results. Pa-

rameter estimates on both Riverton (0.13) and Pleasant Vally (0.1) neighborhood dummies

are positive, implying the houses in these two neighbor sold more than houses that are not in

either one, with Riverton commanding a more signi�cant premium compared to Pleasantvally.

Higher elevation in general decreases a house's sale price, by a 0.046% for every 1% increase

in elevation. Moving away from a water body generally drives down a house's sale price, by a

magnitude of 0.005% for every 1% increase in distance. This again is consistent with the OLS

results, although the magnitude of the estimated impact is slightly smaller. On the other hand,

the parameter estimate on wetlands is positive (0.013), implying that consumers prefer to live

away from wetlands. They are willing to pay on average 0.013% more for every 1% increase in

the distance from the nearest wetland. The parameter estimate on distance to a dam (0.01)

reveals that consumer's preference on dams are similar to that on wetlands. They prefer to live

further away from a dam, and are willing to pay on average 0.01% more for every 1% increase in

distance from a dam. The model suggests that in this particular area, dams as well as wetlands,

are viewed as menace rather than amenities. But once again, the coe�cient on undevelopable

land area in the census block group is positive and signi�cant. This implies that homeowners

prefer open spaces, which can be viewed as an amenity.

Finally, Table 5 - 7 presents coe�cients from three variations of the �Di�erence-in-di�erence�

(DD) model. Tables 5a and 5b present results from basic DD models without any control

variables. The parameter estimates of interest in Table 5a are: β̂2 = 0.16 and β̂3 = −0.19,

the later of which is signi�cant . This implies that being closer to the dam decreases a house's

market value. When we add other housing characteristics as control variables (Table 6a), the

estimates on the overall value of the dam and the decline caused by the recession are similar. The

results with the non-parametric DD model (Table 7a) also result in more signi�cant estimates.

This provides stronger evidence that housing crisis negatively a�ects consumer's valuation of a

house's distance from the nearest dam. In contrast, the DD model that tests for the impact of

steep sloped land before versus after 2009, generates an insigni�cant treatment e�ects in Table
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5b. But when we include other control variables in Tables 6b, the treatment e�ect for low

undevelopable land is negative. This implies more undevelopable increases house prices, and

this e�ect is stronger after the housing crisis. Once again, the results with the non- parametric

DD model (Table 7b) also result in more signicant estimates.

5 Conclusions

We estimate a variety of non-parametric and semi-parametric hedonic housing models, and

obtain estimates of the e�ects of proximity to water, wetlands, and dams on housing prices in

a small Connecticut town. We �nd spatial heterogeneity in the e�ects of dams proximity on

housing prices, with properties that are on the east side of the reservoir having a smaller marginal

impact on prices than the properties on the west side of the reservoir (See Figure 2). However,

the properties in the east are generally further away from the dams than the properties in the

west, which implies that the detrimental e�ects of living near the dams diminish with distance.

We also �nd that wetlands are a disamenity, likely due to the associated development restrictions

imposed upon properties that are located on wetlands. Also, the bene�ts from distance to the

dams diminishes after the housing crisis that began in 2009. Clearly, our empirical approaches

generate a much richer set of results than we would have obtained with an OLS model.

We also incorporate a measure of "undevelopable land" as in Saiz (2010). While the Saiz

(2010) analysis is at the Metropolitan Statistical Area (MSA) level, our undevelopable land

estimates are at the Census block group level due to the fact that we are using transaction-

level observations as opposed to MSA level data. In all of our models, the undevelopable land

coe�cient is positive and signi�cant which implies open space is an amenity. This results is not

surprising given that we are examining a rural town that is much less densely developed than a

metropolitan area. Clearly, our analysis demonstrates that non-parametric and semi-parametric

analysis have the potential to generate many additional insights about spatial heterogeneity for

hedonic models in the context of properties near wetlands, water, and dams.
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A Figures

Figure 1: LWR Coe�cients Values Over Time 5
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Figure 2: Map with Distance to Dams (ft) Coe�cients from LWR, Window Size = 50%
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Figure 3: Map with House Elevation Coe�cients from LWR, Window Size = 50%
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Table 2 – Ordinary Least Square Regression with year‐dummy variables, number of observations: 495 

 

Dependent Variable: Log(House Price) 

Independent Variable  Estimate  standard 
Error 

t‐value  Prob>|t|  standardized 
Estimate 

Cor with Dep 
Var 

Constant  11.849687 0.488472 24.258695 0 ‐‐‐  ‐‐‐ 

Age  ‐0.000995 0.000341 ‐2.921163 0.004 ‐0.11323 ‐0.096859

Acreage  0.006751 0.001761 3.834405 0 0.128024 0.24117

SF  0.000233 0.000029 8.157498 0 0.392005 0.587614

Bedrooms  0.010209 0.019372 0.526967 0.598 0.02054 0.332975

Bathrooms  0.102471 0.027044 3.789045 0 0.180267 0.50488

Riverton  0.12874 0.061419 2.096089 0.037 0.087848 0.079482

Pleasant Valley  0.067654 0.063818 1.060104 0.29 0.043496 0.12204

Log(elevation)  ‐0.074909 0.063284 ‐1.183689 0.237 ‐0.054972 ‐0.130079

Log(water distance)  ‐0.006151 0.017162 ‐0.358384 0.72 ‐0.015355 0.019864

Log(wetland distance)  0.010873 0.017703 0.614182 0.539 0.025704 0.025131

Log(reservoir distance)  ‐0.007059 0.025069 ‐0.281602 0.778 ‐0.00993 ‐0.050186

Log(dam distance)  0.012346 0.017883 0.690341 0.49 0.026628 0.069068

Log(undevelopable land)  0.034872 0.013451 2.592543 0.01 0.092051 0.264946

             
 

Notes: A set of dummy variables for each individual year from 2001‐20015 are included in the regression. The coefficients on these dummy 
variables are not included to keep the results concise.   



 

Table 3 – Locally Weighted Regression, number of observation: 495 

 

Dependent Variable: Log(House Price) 
  Window size = 100%    Window size = 50% 
Independent Variables  mean  f‐test 

statistics 
P‐value  mean 

estimates 
f‐test 
statistics 

P‐value 

Constant,  11.835937 0.049908916 3.37E‐06  11.930532
Sale year  0.014637547 0.019530432 0.007536454 0.023307482 0.061702612 7.89E‐07
Age  ‐0.000939874 0.031320475 0.000358089 ‐0.00093  0.032293676 0.002814858
Acreage  0.007536329 0.13240653 0 0.007341998 0.031649884 0.001277696
SF  0.000236873 0.001223101 0.71571815 0.000242488 0.14501238 3.87E‐13
Bedrooms  0.006943928 0.023170991 0.003848697 0.008729055 0.004717384 0.63064273
Bathrooms  0.086006879 0.008490036 0.068033713 0.094762272 0.033790652 0.003020605
Riverton  0.15357422 0.006219834 0.14583896 0.13769192 0.007348239 0.15824658
Pleasant Valley  0.10082647 0.003994953 0.2938828 0.072668129 0.010739218 0.10345212
Log(elevation)  ‐0.057844936 0.000444276 0.86077814 ‐0.0754517  0.005485869 0.38067747
Log(water distance)  0.00193721 0.001956782 0.56641575 0.003427336 0.000967383 0.94634944
Log(wetland distance)  0.006825122 0.000806289 0.71252051 0.001346175 0.003922995 0.63372945
Log(reservoir distance)  0.001267426 0.002248557 0.50507399 0.001605199 0.002584599 0.62456476
Log(dam distance)  0.020304169 0.016270136 0.016369573 0.01945129 0.0020523 0.79240391
Log(undevelopable land)  0.036133167 0.049908916 3.37E‐06 0.041177997 0.021307558 0.023907947

 

   



 

Table 4 – Partial Linear Model, number of observations: 495 

 

Dependent Variable: Log(House Price) 
  Window size = 100%    Window size = 50% 
               
Independent Variables  estimates  std dev  p‐value  estimates  std dev  p‐value 
Sale year  0.014703576 1.45E‐05 4.45E‐308 0.014593432 1.79E‐05 4.45E‐308
Age  ‐0.000985628 1.25E‐07 4.45E‐308 ‐0.00107 1.23E‐07 4.45E‐308
Acreage  0.007013448 3.36E‐06 4.45E‐308 0.006593148 3.23E‐06 4.45E‐308
SF  0.000234764 8.83E‐10 4.45E‐308 0.000230013 8.37E‐10 4.45E‐308
Bedrooms  0.005871107 0.000399396 6.45E‐49 0.005020374 0.000375901 1.10E‐40
Bathrooms  0.087854818 0.00078013 4.45E‐308 0.089875722 0.000735428 4.45E‐308
Riverton  0.14029175 0.00472622 1.25E‐193 0.13130721 0.005499128 5.21E‐126
Pleasant Valley  0.096429086 0.004533533 2.14E‐100 0.10303589 0.004487951 1.22E‐116
Log(elevation)  ‐0.058524186 0.004657135 3.22E‐36 ‐0.04591 0.004938931 1.46E‐20
Log(water distance)  ‐0.001152824 0.000325839 0.000403152 ‐0.00490 0.00031507 1.27E‐54
Log(wetland distance)  0.009233136 0.000343236 2.18E‐159 0.013283488 0.000342046 4.45E‐308
Log(reservoir distance)  0.002444589 0.000782893 0.001793185 0.002126198 0.000924416 0.021445696
Log(dam distance)  0.015656994 0.000366879 4.45E‐308 0.009542507 0.000374597 3.82E‐143
Log(undevelopable land)  0.035460237 0.000201648 4.45E‐308 0.035328732 0.000199565 4.45e‐308;

 

   



Table 5a: Effects of Distance to DM on House Prices, before and after 2008‐2009 Recession (A Difference‐in‐
Difference Linear Model with No Control Variables) 

Dependent Variable: Log(House Price) 
Independent Variable  Coefficient 

Estimate 
Standard 
Error 

t‐value  Prob
>|t| 

Standardized 
Estimate 

Cor with Dep Var 

CONSTANT  12.533102  0.044542  281.378511  0  ‐‐‐  ‐‐‐ 
D2009  ‐0.205743  0.04914  ‐4.18684  0  ‐0.192991  ‐0.23477 
nearDM  0.128306  0.130622  0.982267  0.326 0.110021  ‐0.140513 
D2009*nearDM  ‐0.333636  0.141593  ‐2.356301  0.019 ‐0.267635  ‐0.199626 
Other Control Variables  None           

 

 

 

Table 5B: Effects of Undevelopable Land on House Prices, before and after 2008‐2009 Recession (A Difference‐
in‐Difference Linear Model with No Control Variables) 

Dependent Variable: Log(House Price) 
Independent Variable  Coefficient 

Estimate 
Standard 
Error 

t‐value  Prob>|t|  Standardized 
Estimate 

Cor with Dep Var 

CONSTANT  12.547226  0.04274  293.572  0  ‐‐‐  ‐‐‐ 
D2009  ‐0.217103  0.047432  ‐4.5771  0  ‐0.203648  ‐0.23477 
lowUnd  0.017101  0.198176  0.08629  0.931  0.013718  ‐0.200094 
D2009*lowUnd  ‐0.257913  0.205962  ‐1.2522  0.211  ‐0.20067  ‐0.220501 
Other Control variables  None           
 

 

 



 

 

Table 6a: Effects of Distance to DM on House Prices, before and after 2008‐2009 Recession (A Difference‐in‐
Difference Linear Model with Other Control Variables) 

 

Dependent Variable: House Prices 
 
Independent Variable  Coefficien

t Estimate 
Standard 
Error 

t‐value  Prob>|t|  Standardized 
Estimate 

Cor with Dep Var 

Constant  11.804565  0.513822  22.974029  0  ‐‐‐  ‐‐‐ 
D2009  0.063132  0.045979  1.373046  0.17  0.059219  ‐0.23477 
nearDM  0.184014  0.105377  1.746244  0.081  0.15779  ‐0.140513 
D2009*nearDM  ‐0.342867  0.117251  ‐2.924205  0.004  ‐0.27504  ‐0.199626 
Sale year  0.014278  0.003409  4.188128  0  0.14441  0.168019 
Age  ‐0.000879  0.000393  ‐2.238725  0.026  ‐0.100013  ‐0.096859 
Acreage  0.00727  0.001877  3.87354  0  0.137849  0.24117 
SF  0.00025  0.000032  7.798907  0  0.420687  0.587614 
Bedrooms  ‐0.000819  0.020647  ‐0.039662  0.968  ‐0.001648  0.332975 
Bathrooms  0.080567  0.028712  2.80605  0.005  0.141733  0.50488 
Riverton  0.176275  0.065476  2.692219  0.007  0.120285  0.079482 
Pleasant Valley  0.069666  0.068656  1.014713  0.311  0.04479  0.12204 
Log(elevation)  ‐0.059892  0.066674  ‐0.898292  0.369  ‐0.043952  ‐0.130079 
Log(water distance)  ‐0.005275  0.018298  ‐0.28827  0.773  ‐0.013168  0.019864 
Log(wetland distance)  0.016206  0.018836  0.860346  0.39  0.038311  0.025131 
Log(reservoir distance)  0.017284  0.027145  0.636749  0.525  0.024314  ‐0.050186 
Log(undevelopable land)  0.028511  0.014478  1.969305  0.049  0.075259  0.264946 

   

Note: The “lowUnd” is a dummy variable that takes value “1” for houses located in a census block with less (than 10% of the sample 
maximum) undevelopable land, and value “0” otherwise. 



 

Table 6b: Effects of Undevelopable Land on House Prices, before and after 2008‐2009 Recession (A Difference‐
in‐Difference Linear Model with Other Control Variables) 

 

Dependent Variable: House Prices 
 
Independent Variable  Coefficient 

Estimate 
Standard 
Error 

t‐value  Prob>|t|  Standardized Estimate  Cor with Dep Var 

Constant  11.688108  0.530025  22.051983  0  ‐‐‐  ‐‐‐ 
D2009  0.051347  0.045769  1.121867  0.262  0.048164  ‐0.23477 
lowUnd  0.297856  0.162582  1.832032  0.068  0.238933  ‐0.200094 
D2009*lowUnd  ‐0.385936  0.16739  ‐2.305604  0.022  ‐0.300278  ‐0.220501 
Sale year  0.013916  0.003446  4.038475  0  0.140746  0.168019 
Age  ‐0.001032  0.000393  ‐2.625753  0.009  ‐0.117464  ‐0.096859 
Acreage  0.007371  0.0019  3.879905  0  0.139766  0.24117 
SF  0.000255  0.000032  7.896986  0  0.42955  0.587614 
Bedrooms  0.003775  0.020877  0.180813  0.857  0.007595  0.332975 
Bathrooms  0.083576  0.028948  2.887148  0.004  0.147027  0.50488 
Riverton  0.16536  0.066095  2.50186  0.013  0.112837  0.079482 
Pleasant Valley  0.107009  0.068783  1.55574  0.12  0.068798  0.12204 
Log(elevation)  ‐0.059091  0.068425  ‐0.863579  0.388  ‐0.043364  ‐0.130079 
Log(water distance)  0.0029  0.018517  0.156634  0.876  0.007241  0.019864 
Log(wetland distance)  0.005143  0.018913  0.271915  0.786  0.012157  0.025131 
Log(reservoir distance)  ‐0.000578  0.026855  ‐0.021536  0.983  ‐0.000814  ‐0.050186 
Log(dam distance)  0.02724  0.019433  1.401745  0.162  0.058753  0.069068; 

   

Note: The “lowUnd” is a dummy variable that takes value “1” for houses located in a census block with less (than 10% of the sample 
maximum) undevelopable land, and value “0” otherwise. 

 



Table 7a: Effects of Distance to DM on House Prices, before and after 2008‐2009 Recession (A Semi‐parametric 
Difference‐in‐Difference Partial Linear Model with Other Control Variables)                    

Dependent Variable: House Prices 
 
Independent 
Variable 

Coefficient 
Estimate 

Standard 
Error 

t‐value  Prob>|t|  Standardized Estimate  Corr with Dep Var 

D2009  0.067434  0.043568  1.547806  0.122  0.072215  0.04058 
nearDM  0.194833  0.099201  1.964018  0.05  0.183202  ‐0.045653 
D2009*nearDM  ‐0.304508  0.110337  ‐2.759806  0.006  ‐0.25698  ‐0.093761 
Control variables  Full set*           
             
 

 

Table 7b: Effects of Undev_CB on House Prices, before and after 2008‐2009 Recession (A Semi‐parametric 
Difference‐in‐Difference Partial Linear Model with Other Control Variables)                        

Dependent Variable: House Prices 
 
Independent 
Variable 

Coefficient 
Estimate 

Standard 
Error 

t‐value  Prob>|t|  Standardized Estimate  Corr with Dep Var 

D2009  0.063711  0.043541  1.463234  0.144  0.067278  0.040029 
lowUnd  0.307897  0.154673  1.990628  0.047  0.3077  ‐0.060371 
D2009*lowUnd  ‐0.394937  0.158545  ‐2.491004  0.013  ‐0.386264  ‐0.086997 
Control variables  Full set*           
             

 

Note: The “lowUnd” is a dummy variable that takes value “1” for houses located in a census block with less (than 10% of the sample 
maximum) undevelopable land, and value “0” otherwise. The control variables includes house characteristic variables as included in Table 6a 
& 6b. We did not include the estimates in the report to keep it concise.  
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