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Abstract 
 
This paper investigates house price diffusion over time and space at the CBSA-, town-, and 
census tract-level.  We estimate fixed effects models of growth rates on lagged growth rates 
(persistence effects), lagged growth rates from nearby jurisdictions (spillover effects) and growth 
rates in fundamentals.  The estimated persistence and spillover effects are positive and 
significant at the CBSA-level.  We find large ripple (contagion) effects that may have 
contributed to the recent housing downturn that reached the national-level.  When estimating 
town-level diffusion, we find little evidence of persistence or spillover effects.  Hence price 
diffusion appears to be stronger across than within housing markets.  Fundamentals do not 
appear to be the main drivers of price diffusion which leaves room for housing bubbles based on 
households’ over-optimism about future house prices. 
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1. Introduction     
 
This paper investigates the movement of house prices over time and space.  We look at house 
price diffusion at three different levels of aggregation: Core Based Statistical Area (CBSA), 
town, and census tract.  This involves modeling house price growth rates as functions of lagged 
growth rates in both the own and nearby jurisdictions.  The latter capture spillover effects.  We 
also include fundamentals that are seen to drive house prices including population, income, and 
employment on the demand side and new housing on the supply side. We then estimate impulse 
response functions that result from shocks to the system to estimate short- and long-run 
persistence and spillover effects.  
 
Most studies that look at price diffusion do so at a more aggregate level such as the MSA, region 
or county (see references below).  What is different about this analysis is that we examine price 
shocks that occur at different levels of aggregation; CBSA, town, and census tract and then 
compare the price diffusion processes at these different levels.   
 
At the CBSA level, this study can help to explain the recent major downturn in the housing 
market that precipitated the Great Recession.  We show that there is a large ripple or contagion 
effect such that house price growth rates are affected by price changes in nearby CBSAs.  Large 
and persistent positive or negative growth rates in say, the sand states, can ripple across the 
CBSA landscape and potentially result in a downturn at a national level as witnessed in the Great 
Recession.  Policymakers might pay closer attention to large changes in house prices in local 
areas if there is some chance that they can spread across jurisdictions. 
 
This diffusion process is important for understanding the full impact on prices of housing cycle 
fluctuations and for understanding the impact of local shocks on prices in nearby jurisdictions. 
It should be of use in evaluating the full impact of policies that target specific areas such as 
enterprise zones or areas for redevelopment or policies that create affordable housing in certain 
locations.  Another example is the cleanup of hazardous waste sites where it is interesting to look 
at how this affects prices in nearby areas. Another topic where price diffusion is important is 
gentrification where rising prices can “price out” longer-term, lower income residents. 
 
It is important to understand the mechanisms by which price changes can propagate over time 
and space.  House price growth can be influenced by changes in fundamentals such as area 
income, population, and employment.  The employment effects could be important due to 
agglomeration economies (Duranton and Puga, 2004) that drive the growth of urban areas. An 
example of agglomeration economies is improved labor market matching, which can enhance 
productivity and lower costs for businesses. This can lead to additional growth and in turn, 
impact housing prices in and nearby the areas where the agglomeration is occurring. Prices can 
be expected to rise in the hub town(s), and fall in more distant towns as the higher productivity 
residents choose to migrate to the bigger towns in search of better opportunities. Shocks can also 
occur as demand for housing changes over time and certain types of units or certain areas 
become popular.  On the supply side, overbuilding can actually result in a reversal of positive 
price shocks as witnessed in the recent Great Recession.   
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Changes in fundamentals can also lead to spillovers due to regional coordination.  Zabel (2012) 
shows that labor demand shocks can lead to relatively small house price spillover effects in 
nearby MSAs that depend on the house price elasticity of supply. At the local level, Zabel and 
Dalton (2011) show that changes in minimum lot size restrictions not only affect prices in the 
town in which they occur but also spill over to nearby towns.  Growth rate shocks can also 
stimulate supply-side effects in neighboring jurisdictions as profits can motivate developers to 
build new units in these areas. 
 
At the local level, local price shocks can spread through information channels.  These include the 
process by which appraisers value houses.  That is, they use transactions from nearby units or 
“comps” as a means for valuing units.  Real estate agents (and real estate websites such as 
Zillow.com ®) typically follow a similar procedure when valuing units and/or when advising 
clients about list prices.  Hence even a price shock that affects a single unit can spread to nearby 
units through this process.  Real estate agents, in particular, can be the basis of information 
dissemination as buyers are made aware of “hot” areas.  This might cause them to buy in the hot 
areas and this can lead to persistence in the price shock in this area.  They also might buy is 
nearby areas in the belief that these areas will be the next hot spots which will be self-fulfilling.  
This can result in a “ripple” effect as the initial price change leads to a series of price changes 
farther and farther away.  For example, if one town increases its school quality this can affect 
prices in that town and possibly spillover to nearby towns.   
 
At the CBSA level, Defusco et al. (2015) find that changes in fundamentals cannot explain house 
price changes in the home or neighboring MSAs.  They also don’t find that the mortgage lending 
can explain contagion effects.  Short of these channels, other non-economic channels include 
information channels and non-rational behavior that can give rise to bubbles.  Glaeser et al. 
(2008) develop a model of bubbles and endogenous housing supply.  They model “irrational” 
bubbles based on households’ over-optimism about future house prices. Their model predicts 
that bubbles will be more prevalent in areas with inelastic housing supply. 
 
We have few priors about how this price diffusion will propagate across time and space, so we 
will impose as few assumptions as possible on its form.  We include economic fundamentals to 
test for direct and spillover effects at both the CBSA and town level.  We also include measures 
for school quality and crime at the town level to test if changes in local amenities can explain 
direct and spillover price effects.  We then simulate the impact of price shocks that will result in 
visual graphs of the price propagation. 
 
We make the following contributions to the literature on house price diffusion.  First, we 
estimate diffusion models at the local level (both town and census tract) and the CBSA level – 
few, if any, studies estimate diffusion models at the local level much less at multiple levels of 
geography.  Second, we estimate the ripple effect due to a house price shock in a single 
jurisdiction.  Third, we identify persistence and spillover effects at the local level using the split 
sample IV estimator proposed by Case and Schiller (1989).  Fourth, we use Locally Weighted 
Regressions (LWR) to estimate price indices at the town and census tract level where transaction 
data can be sparse.  We also expand the kernel to smooth over time as well as space. 
 



4 
 

In addition, we answer the following questions that relate to the underlying diffusion process.  
Does the house price diffusion process depend on: 
 

 The aggregation level of the data? 
 The frequency of the data? 
 Positive versus negative price shocks (asymmetric response)? 
 Supply-side factors (ease of building)? 
 Economic and demographic fundamentals? 
 Location: is the spillover effect different across borders of jurisdictions such as census 

tract or towns?   
 At the local level, does the spillover over effect arise from nearby towns as determined by 

distance or by similarity of local public goods? 
 
The remainder of this paper is structured as follows.  Section 2 includes a review of the relevant 
literature.  Section 3 provides a detailed discussion of the data.  The price diffusion model and 
the estimation procedure are developed in Section 4.  Results are given in Section 5 and 
conclusions in Section 6. 
 
 

2. Literature Review 
 
Previous studies on house price diffusion can be categorized into one of three categories: studies 
that attempt to explain the source of diffusion; research into whether or not diffusion exists; and 
a combination of testing for diffusion and explaining its source(s). 
 
Early work attempting to explain spatial house price transmission attributes the diffusion to 
positive attitudes about assets that lead to feedback effects, as well as a form of “rational 
learning”. A linkage between migration and diffusion has also been found. 
 
Clapp and Tirtiroglu (1994) shed light on the potential causes of house price diffusion, finding 
that positive “news” about asset prices (such as housing) can lead to positive attitudes. The 
positive attitudes further enhance the direct effects of the news on the asset prices. This is one of 
the earliest known attempts to explain how the diffusion process takes place. In a subsequent 
paper Clapp et al (1995) examine several Connecticut and California jurisdictions, and find 
evidence of spillovers across town boundaries that may be consistent with “rational learning”.  
 
Another early study examines the linkage between housing price transmission and migration 
across regions. Gabriel et al (1992) find that differences in house prices across regions are 
important explanatory variables in the determinants of inter-regional migration. Substantial 
variation in migration patterns may also impact housing prices. 
 
Meen (1999) focuses on housing markets in the UK and finds that intrinsic differences across 
housing markets is a key contributing factor for “ripple effects”. Through simulations, the author 
demonstrates how different patterns of growth across different markets are not as important as 
the “structural” differences in regional housing markets.   
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Contrary to the studies described above, Pollakowski and Ray (1997) focus on whether diffusion 
exists as opposed to attempting to explain the sources of the diffusion. They find evidence of 
spillover effects in housing prices across MSA’s that share a common border. Similarly, Dolde 
and Tirtiroglu (2003) focus on testing for feedback effects. Their findings are distinct from 
others in that they find negative feedback effects in the short-run.  
 
Holly et al (2011) develop a vector autoregression (VAR) model with regional and spatial shocks 
to subsequently simulate impulse response functions. Their goal is to assess for the presence of 
diffusion between London, UK, and other parts of the UK as well as between other parts of the 
world. An important finding is that London is a “dominant region” in terms of housing market 
prices. 
 
The findings of these previous studies are important building blocks in the present analysis for at 
least two reasons. First, there is clear evidence of diffusion in various parts of the U.S. and the 
UK, which provides a basis of comparison and a set of hypotheses for us to test. Second, these 
previous studies generate several potential reasons why we should expect diffusion, which is 
helpful in motivating our research. Our focus is on the Greater Boston Area (GBA), while most 
of the previous studies focused on other parts of the U.S. and the rest of the world. Finally, our 
implementation of Locally Weighted Regresssions (LWR) to “smooth” our price estimates 
appears to be novel in the literature. One important benefit from using LWR is that we can 
generate separate smoothing estimates for each jurisdiction, which implies the potential for 
distinct diffusion effects across each jurisdiction. These various jurisdictions in our analysis are 
described in the data section. 
 
DeFusco et al (2015) investigate the role of spillover (contagion) effects in the recent housing 
boom. They look at spillovers that follow a positive shock to a nearby housing market that is 
identified by estimating structural breaks in house price growth rates that signified the beginning 
of a boom period.  One key to identification is that there was a lot of heterogeneity in the start of 
housing booms across MSAs in the U.S.  To avoid bias that arises when using the same data to 
measure the beginning of housing booms and the resulting price changes, the authors use a split 
sample estimator.  They find strong evidence that contagion played an important role in the 
recent housing boom with estimates of spillover effects elasticities in the range of 0.15-0.33.  
The authors find that the contagion effect is larger in smaller markets when the price shock 
begins in a larger market.  They also find that the contagion effect is limited to markets with 
larger price elasticities of housing supply. 
   
Defusco et al (2015) offer a number of mechanisms for price spillovers.  First, a demand shock 
in one MSA could affect prices in nearby MSAs due to regional connectedness.  The resulting 
increase in jobs and income might lead to a migration of jobs and or population that could put 
upward pressure on prices in nearby MSAs.  Second, lenders who profit from price growth in 
one MSA might expand their business in nearby MSAs.  This increase in credit availability could 
lead to an increase in house prices.  Third, the same mechanism could work for housing 
investors. Fourth, price increases in an MSA might lead residents in nearby MSAs to think that 
prices will rise in their MSAs.  Fifth, price growth in an MSA might lead to greater awareness of 
neighboring housing markets and hence enhance spillover effects. 
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They test for the viability of these mechanisms by regressing the following five variables on 
measures of when the nearest neighbor enters a housing boom; home MSA income, the percent 
of sales due to speculators, net migration flows into the home MSA, the fraction of new 
mortgage originations by subprime lenders, and the fraction of new mortgage originations 
insured by the FHA or VA.  They find no evidence that any of these variables are significantly 
affected by the neighbor’s boom and hence cannot explain the price spillovers.  Defusco et al 
(2015) also include the fundamentals directly in the spillover model and find that the results do 
not change.   

Agglomeration can be another source of house price variation across geographic areas. For 
instance, Van Nieuwerburgh and Weill (2010) demonstrate that productivity dispersion – which 
can be caused by differences in agglomeration across MSA’s – can lead to dispersion of house 
prices. Also, Duranton and Storper (2006) indicate that the “non-market interactions in 
agglomeration and residential behavior” is one area of interest to both economists and 
geographers. However, there is a lack of empirical evidence on how concentrations of 
employment may be a diffusion mechanism that drives house prices nearby. It may be the case 
that towns with concentrations of employment (or, lower unemployment) lure potential workers 
towards these towns, which can lead to lower demand for housing (and lower house prices) in 
the other towns with lower employment densities. 
 
Zabel (2012) shows that generally labor demand shocks can lead to relatively small house price 
spillover effects in nearby MSAs. But the spillover effects depend on the price elasticity of 
housing supply in the home MSA.  In MSAs where the supply elasticity is high, out-migration is 
positive.  This could arise as residents move out to fill the new jobs in the MSA that received the 
demand shock.  The loss of population results in lower house prices and lower new housing 
supply.  On the other hand, in-migration is positive in MSAs where the supply elasticity is low.  
This could result from residents moving in as a response to the rise in house prices due to the 
demand shock in the neighboring MSA.  The increase in population results in higher house 
prices, new housing supply, and employment. 
 
Glaeser et al (2014) find the following stylized facts in their analysis of housing dynamics: 1) 
positive persistence in the short-run, 2) mean reversion in the long-run, and 3) most variation in 
house prices is local not national.  We examine the extent to which our results are consistent with 
these stylized facts.  
 
 

3. Data 
 
We look at price diffusion at three different levels; CBSA, town, and census tract.  The CBSA-
level data come from the quarterly Federal Housing Finance Agency (FHFA) single-family 
house price index for 100 CBSAs between the first quarter in 1991 and fourth quarter of 2014.  
This index is based on transaction only data.  The index is set to 100 for all 100 CBSAs in the 
first quarter of 1991.  It is put in real terms using the national CPI.  Then we calculate the real 
growth rate in house prices.  We calculate the distance to nearby CBSAs and use this as a basis 
for identifying neighbors and their impacts on prices. 
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We include a number of economic and demographic variables at the CBSA level over this time 
period.  These include total employment, population, and per capital (real) income (from the 
BEA).  On the housing side, we include the number of building permits (from the Census 
Bureau) and a measure of the price elasticity of housing supply from Saiz (2009).  The latter is 
time invariant whereas the remaining variables are annual. 
 
We also use transactions of single-family homes in the Greater Boston Area (GBA) for 1987-
2012.  The data are from the Warren Group for 1987-1994 and CoreLogic for 1995-2012 and 
cover towns in Bristol, Essex, Middlesex, Norfolk, Plymouth, and Suffolk Counties.  These data 
include the exact date of sale (or at least the month and year) and the exact location (latitude and 
longitude).  This will allow us to accurately account for the price diffusion process over time and 
space.  Given this long time period, we do not have to temporally limit the price propagation.  
This is important since price impacts can take a long time to fully manifest themselves in the 
housing market.  Another benefit of the data is that it covers multiple housing cycles and we can 
investigate if price propagation varies with the housing cycle. 
 
Sales that were not standard market transactions such as foreclosures, bankruptcies, land court 
sales, and intra-family sales are excluded.  Further, for each year, observations with the bottom 
and top 1% sales prices are excluded to further guard against non-arms-length sales and 
transcription errors.  The data include typical house characteristics: age, living space, lot size, the 
number of bathrooms, bedrooms, and total rooms. The sample is limited to units with at least one 
bedroom and bathroom, 3 total rooms and 500 square feet of living space and no more than 10 
bedrooms and 10 bathrooms, 25 total rooms, 8000 square feet of living space, or 10 acres.   
 
The second transaction is excluded for properties that sold twice within 6 months (similar to 
Case/Shiller) and for properties with two sales in the same calendar year with the same 
transaction price (likely duplicate records).  Properties for which consecutive transactions 
occurred in the same year or in consecutive years and where the transaction price changed (in 
absolute value) by more than 100% are excluded.  Similarly, properties where consecutive 
transactions were in year t and t+j and where the transaction price changed (in absolute value) by 
more than j00% were excluded for j=2,…,12.  
 
32 towns with less than 100 total observations are dropped and 36 census tracts with less than 10 
observations are excluded leaving a total of 145 towns and 833 census tracts for a total of 
639,859 observations.  Summary statistics are given in Table A1. 
 
When carrying out the analysis at the census tract level, we need to deal with the problem that 
census tracts change over time; they can split or merge.  Using GIS, we have determined the 
largest origin tract as the consistent tract.  For example, if tract A splits into B and C in 2000 we 
use A as the consistent tract and aggregate sales in B and C starting in 2000.  This results in 641 
consistent census tracts for this analysis.     
 
We include a number of economic and demographic variables at the town level for 1990-2012.  
These include total employment, population, and the unemployment rate.  On the housing side, 
we include the number of building permits (from the Census Bureau).  We also include variables 
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to capture local public goods; school quality and safety.  The measures we use are test scores and 
crime rates. 
 
Data from the Massachusetts Department of Education (MADOE) is available for the 
Massachusetts Educational Assessment Program (MEAP) (every other year from 1988 until 
1996) and the Massachusetts Comprehensive Assessment System (MCAS) (every year starting n 
1998).  School quality is measured as the sum of district-level 4th and 8th grade math and 
reading/ELA exams. The average of the two surrounding years for 1989, 1991, 1993, 1995, and 
1997 is used since no state-wide standardized exams were given in these years. Since scores are 
not comparable across years, the school quality variable is then standardized on an annual basis.  
 
Data on property and violent crimes are obtained from the FBI's Uniform Crime Reporting 
Statistics.  Property crimes include burglary, larceny-theft, and motor vehicle theft. Violent 
crimes include murder and non-negligent manslaughter, forcible rape, robbery, and aggravated 
assault.  The first principle component of the two crime variables is used as the two measures of 
crime are highly correlated (correlation = 0.68). This variable is then standardized over the whole 
sample since units are not meaningful. One of the drawbacks of this crime measure is that 36 of 
the 145 towns did not report crime statistics and many of the remaining towns do not report data 
for all years. This is dealt with in the model by including a variable that indicates which towns 
do not report crime information (and by setting the crime measure to zero for the missing 
values). 
 
 

4. Model and Estimation Procedure 
 
To capture price diffusion, we specify a model that includes own lags of house price growth, lags 
of neighbors’ house price growth, and growth rates in market fundamentals.  We follow the 
previous literature by using excess returns as the dependent variable so this results in the 
following model of price diffusion: 
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where tjt
E
jt R̂GR̂GR̂G  is the estimated excess return in the growth rate at time t in 

jurisdiction j, tR̂G  is the estimated  growth rate at the aggregate level (i.e. if j is the town then 

this is the growth rate for the Boston market at a whole), E
t,n j

R̂G is the estimated excess return in 

growth rate(s) in time t in towns that are neighbors to j, f(  ) is the spillover process, and F
jtR̂G  

is a vector of growth rates of market fundamentals.  At the CBSA level, these include total 
employment, per capita income, population, and building permits.  At the town level, these 
include total employment, population, the unemployment rate, building permits, test scores, and 
crime rates. 
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For the CBSA-level model, f(  ) is specified as the distance weighted average of the growth rates 
in the five nearest CBSAs.  In the case of town-level data, we consider two different means for 
calculating the spillover effect.  One is based on the average of growth rates in adjacent towns 
and the other is based on substitute towns in terms of similar levels of local public goods.  Note 
that we include both price and fundamentals spillovers.  This allows for different spillover 
channels and we can test for different mechanisms to explain potential spillovers. 
 
For the CBSA-level data, we use the quarterly FHFA house price index for 100 CBSAs between 
the first quarter in 1991 and fourth quarter of 2014.  We can then take log-differences across 
years to obtain growth rates. 
 
To obtain growth rates at the town and census tract level, we first regress the natural log of real 
house prices on house characteristics and time-by-jurisdiction fixed effects 
 

  ijtjt1it0
r

ijt euXPln                 (2) 

 
where Pijt is the price for house i, in jurisdiction j, in year t, Xit is a vector of house characteristics 
and ujt is a time by jurisdiction fixed effect.  We use the results from equation (2) to obtain the 

estimates of these fixed effects, jtû .   These can be viewed as jurisdiction-level prices since they 

are averages of all sales in a given jurisdiction and time period that control for structural 
characteristics.  We can use these estimates to obtain growth rates. 
 
A potential problem with this approach is that there can be very few sales in a given jurisdiction 
and time period and hence the prices can be measured with considerable error.  We address this 
problem by smoothing over nearby prices using Locally Weighted Regressions, LWR (McMillen 
and Redfern 2010).  This is also referred to as Geographically Weighted Regressions, GWR 
(Fotheringham et al 2002).  While the typical use of LWR only smooths across space, we use a 
two-dimensional kernel that takes the geographic distance and the time of “nearby” prices into 
account.  The smoothing kernel is based on a generalization of the Gaussian kernel: 
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where wkj = 1 if k = j, ij is distance between jurisdictions k and j in geographic space, and b is 
the bandwidth.  While one approach to bandwidth selection is the Silverman (1986) rule of 
thumb, we choose b optimally using the approach within the routine specified in the GWR.ado 
file in Stata.  

Given that the second exponential expression in equation (3) approaches zero rapidly when (tk – 
tj) is greater than 3 (or less than -3), we restrict our attention in the time dimension smoothing to 
time periods that are within 3 years of the target transaction.   



10 
 

The use of the time dimension in the kernel is motivated by two insights.  First, it adds more 
nearby observations that should increase the accuracy of the smooth.  Second, it is likely that 
observations from the same jurisdiction in different time periods are closer approximations to the 
true price than are some of the observations in other jurisdictions.  This would be particularly 
true when the other jurisdictions are in other towns (versus census tracts in the same town).  

In the context of the diffusion model that we estimate (equation 1), the downside of using the 
time dimension in the kernel is that it can potentially contaminate the dynamics in the model as 
previous years’ prices are used to estimate current prices and also appear as explanatory 
variables.  We will estimate models with and without the time dimension in the kernel to see how 
this affects the results.   

The nonparametric model we estimate is as follows: 
 

  jtijt ZgY    j = 1,…,Nj; t = 1987,…,2012,    (4) 

 
where Yjt and Zi are estimated fixed effects from equation (2) and the subscript i above spans all 
jurisdictions and all years in the data set.  We weight each observation by the (square root of the) 
number of transactions in each jurisdiction in each year. 
 
Similar to the approach of McMillen and Redfearn (2010), our marginal effects estimates, 

denoted as jtd̂ , are obtained by the following form of weighted least squares: 

 

   ik ikj

1'
ik ikjjt YZwZZwd̂  

  j,k = 1,…,Nj; t= 1987,…,2012,  (5) 

 

This marginal effect jtd̂  gives an estimate of the log of the jurisdiction price in each year, which 

we henceforth denote as jtP̂ln . 

 
Next we take the difference in smoothed log prices to generate the jurisdiction price growth rate 
 

 1-tj,jtjt P̂lnP̂ln100R̂G         (6) 

 
Case and Shiller (1989) point out that a bias arises when including the estimated lagged growth 
rate in equations (1).  First, the growth rate that we use is estimated based on the difference in 
estimated prices 
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ûlnPûlnP100         

Pn̂lPn̂l100R̂G









 



11 
 

Second  

      
   1tj,

2
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ûû100GR,ûû100GRCovR̂G,R̂GCov







  

 
So even if there is no correlation in growth rates over time, there is an induced negative 
correlation in the estimated growth rates due to the common residual. 
 
Case and Shiller (1989) recommend a split sample IV procedure to solve this problem.  This 
amounts to dividing the sample in two and estimating separate growth rates for each sample.  

Call these 1
jtR̂G and 2

jtR̂G .  We can the alternate 1
jtR̂G and 2

jtR̂G as lags in the price diffusion 

equation (1).  
 
Note that we can use the split sample IV procedure when estimating the town-level and tract-
level diffusion models but not for the CBSA-level model since we have the transaction-level data 
to estimate the former models but not the latter.  Still, we can use the results from the town- and 
tract-level models to provide information about the bias that might plague the estimates for the 
CBSA-level diffusion model. 
 
 

5. Results 
 
We present results for the basic diffusion model (1) at three different levels of aggregation; 
CBSA, town, and census tract.  We also estimate the CBSA-level model using quarterly and 
annual data. 
 

5.1 CBSA Level  
 
We have quarterly data from the FHFA for price indices for 100 CBSAs for 1991q1 to 2014q4.  
Hence, we do not go through the above process for generating price indices.  But this also means 
we cannot employ the split sample IV estimator.  Figure 1 displays the real FHFA national house 
price index for this period where prices are discounted using the national CPI.  Real prices were 
constant until 1998 and then increased by 50% between 1998 and 2005.  An almost similar 
decline followed between 2007 and 2011 but prices have rebounded to be about 20% above the 
level in 1991.  Of course, this national index masks great heterogeneity in prices for individual 
CBSAs.  This is apparent in Figure 2 which includes real FHFA price indices for Boston, 
Cleveland, Phoenix, and San Francisco. 
 
Since the price diffusion model includes jurisdiction-level fixed effects, uj, and lags of the 
dependent variable, the fixed effects estimator is inconsistent.  One alternative is to use the 
Arellano-Bond estimator.  For three reasons, we use the fixed effects estimator.  First, since we 
are not interested in the individual coefficient estimates but only in forecasting impacts on the 
growth rate in prices from price shocks, the inconsistency of individual coefficient estimators is 
less important.  Second, the impacts when estimated using fixed effects and the Arellano-Bond 
estimators are generally very similar.  Third, the Sargan over-ID test is rejected.  This indicates 
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that the instruments used for the Arellano-Bond estimator are not valid and hence these results 
are also not consistent.   
 

5.1.1 Quarterly Frequency 
 
We first estimate the price diffusion model using quarterly data.  We don’t include the market 
fundamentals since they are only observed annually.  Later, we will estimate this model at the 
annual frequency and then include the market fundamentals.  We estimate equation (1) with 20 
lags of both the own growth rate and the neighbors’ growth rate.  We standardize all the growth 
rates so that the coefficient estimates are comparable.1   
 
We use the results to simulate the effects from a 1 standard deviation increase in the real national 
house price growth rate.  This means that the growth rates in all CBSAs receive the same shock.  
We use the coefficient estimates to calculate the response function (similar to the impulse 
response function).  We refer to the impacts from the own lags as the persistence effects, those 
from the neighbors’ lags as the spillover effects, and their sum as the total effects.  The results 
are given in Figure 3.  The persistence effects are mostly positive for the first 10 quarters and 
then mostly negative for the remaining 10 quarters; though the positive responses tend to be 
larger than the negative ones.  The spillover effects are positive for the first five quarters and 
then are close to zero after that.  The total effect shows a positive initial impact on growth rates, 
followed by a period of smaller negative impacts.  The long-run persistence effect (the sum of 
the lags) is 0.565; the long-run spillover impact is 0.802, and the total long-run impact is 1.367.  
We bootstrapped the standard errors and the p-value for the long-run persistence effect is 0.015 
and is less than 0.001 for the other two statistics.  Hence all three long-term effects are positive, 
large, and significant.  The result for the total effect is generally consistent with the stylized facts 
in Glaeser et al (2014); the impact is positive for the first 12 quarters then negative after that and 
the long-run effect is positive.  
 
It is possible that there is an asymmetric response to negative and positive shocks.  That is, a 
positive shock can induce building whereas a negative shock cannot result in a symmetric 
decline in the housing stock.  Furthermore, transaction volume leads price in response to a 
negative shock as households are reluctant to drop their asking price for various psychological 
reasons (Leamer (2007) and Genesove and Mayer (2001)).  So we allow for separate coefficients 
for positive and negative growth rates.  We use a spline specification since we expect that there 
is a continuous response at a zero growth rate versus a discontinuous jump as there is no real 
change in regime when the zero growth rate threshold is crossed.   
 
We then simulate the effects from a 1 standard deviation increase and a 1 standard deviation 
decrease in the real national house price growth rate.  In the case of a 1 standard deviation 
increase, the long-run persistence effect is 0.120, the long-run spillover impact is 0.819, and the 
total long-run impact is 0.939.  In the case of a 1 standard deviation decrease, the long-run 
persistence effect is -0.873; the long-run spillover impact is -0.706, and the total long-run impact 
                                                            
1 Defusco et al (2015) also use 5 years of lags.  Generally, 6 year and higher lags (more than 20 
quarterly lags) are not significant. 
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is -1.579.  Despite the difference in long-run persistence effects, the period-by-period patterns 
are fairly similar; though opposite in sign (see Figures A1 and A2).  The reason that the 
persistence effect is small in magnitude in the case of a 1 standard deviation increase in the real 
national house price growth rate versus a 1 standard deviation decrease is the existence of larger 
negative impacts in the last few periods in the former case whereas there are not commensurate 
positive impacts is the latter case. 
 
As in Zabel (2012) and DeFusco et al (2015), we allow for the impact of a 1 standard deviation 
increase in the real national house price growth rate to vary with the price elasticity of housing 
supply.  We then evaluate this impact at the 10th and 90th percentile values of this price elasticity; 
0.867 and 3.466, respectively.  While the long-run persistence effect does not change much, 
there is a significant difference in the long-run spillover effect.  The value when the price 
elasticity is low is 0.230 and it is not statistically significant whereas the value when the price 
elasticity is high is 1.566 and it is significant.  This is consistent with the findings in DeFusco et 
al (2015) that there is little evidence of spillover effects in cities where housing is inelastically 
supplied. 
 
We next consider the ripple effect.  To set this up, we consider a 1 standard deviation increase in 
the growth rate of a single CBSA and then look at how this affects the growth rate in the nearby 
CBSA (ring 1), the nearby CBSA to the nearby CBSA (ring 2) and so on.  The coefficient 
estimate for the first lag of the growth rate of the nearby CBSA is positive, large and significant 
(0.300), so the ripple effect is significant.  Figure 4 shows the ring effects for 3 waves.  Wave 1 
increases prices by 0.300 standard deviation in ring 1 (year 1), 0.089 in ring 2 (year 2), 0.026 in 
ring 3 (year 3) and 0.008 in ring 4 (year 4).  Wave 2 starts with a negative impact of 0.098 
standard deviation on prices in the center CBSA in year 1, and positive impacts of 0.118, 0.009, 
and 0.021 standard deviations in ring 1 (year 2), ring 2 (year 3), and ring 3 (year 4), respectively.  
Finally Wave 3 starts with an impact of 0.227 standard deviation on prices in the center CBSA in 
year 2, a positive impact of 0.044 in ring 1 (year 3),  and a positive impact of 0.058 in ring 2 
(year 4).  Hence the total impact on prices in the nearest CBSA is a 0.460 standard deviation 
increase in prices and in the next CBSA of 0.156.  If there are persistent large positive shocks, 
the ripple effect can be substantial.  This significant contagion effect can help explain the recent 
housing downturn that reached the national level. 
 

5.1.2 Annual Frequency 
 
We next estimate the price diffusion model at the CBSA level using annual data.  This allows us 
to investigate two issues.  First, we can see the impact of aggregating from the quarterly to the 
annual level.  Second, we can add fundamentals (that are only available annually) to determine 
their impact on price growth.   
 
We include 5 lags of all explanatory variables (which is the same as 20 quarters).  To see the 
impact of aggregation on the diffusion process, we first estimate equation (1) without the market 
fundamental variables.  The long-run persistence effect is 0.505, the spillover effect is 0.326, and 
the total effect is 0.831.  Whereas the long-run persistence effect is similar to the estimate 
obtained when using the quarterly data, the spillover effect is smaller.  Thus it appears that 
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aggregating to the annual level results in an under-estimate of the spillover effect compared to 
using quarterly data. 
 
We then add in the economic, demographic, and housing supply variables.  Using these results, 
we calculate the long run price responses to a 1 standard deviation shock in the growth rate in 
each variable in the host CBSA and in the neighboring CBSAs which is the source of the 
spillover effect.  First consider the changes in fundamentals in the host CBSA.  The total impact 
is the sum of Fundamental, Persistence and Price Spillover effects.  The Fundamental effect is 

the direct effect on prices from the change in the growth rate in the fundamental variable, F
jtR̂G .  

The Persistence Effect arises from lagged price effects via E
k-tj,R̂G and the Price Spillover Effect 

is due to the impact of the lagged neighbors’ price variable, E
k-t,n j

R̂G .  The latter effect arises as 

price changes in the host CBSA lead to changes in prices in the neighboring CBSAs which 
feedback to the host CBSA.   
 
The results are given in Panel A of Table 1.  A one standard deviation increase in the growth rate 
in income results in a long-run increase in the growth rate in prices of 0.153 standard deviations.  
The long-run Persistence and Price Spillover effects are relatively small.  Similar results hold for 
a one standard deviation increase in the growth rates of employment and population.  A one 
standard deviation increase in new building permits for single family units results in a long-run 
persistence effect of -0.530.  While it is expected that an increase in supply should reduce prices, 
this is not due to the direct effect (Fundamental) but comes equally from the persistence and 
spillover effects.  Overall, while increases in the growth rates in income, employment, and 
population have relatively small impacts on prices as compared to housing market shocks, an 
increase in housing supply does have a large impact on prices (but this impact is imprecisely 
estimated). 
 
Long-run spillover effects from changes in growth rates in the fundamentals in nearby CBSAs, 

F
t,n j

R̂G  are included in the Panel B of Table 1.  These Fundamental Spillover Effects are made 

up of the same components as the Direct Spillover Effects. The total effects are negative though 
fairly small for changes in the growth rates in income and employment in the neighboring 
CBSAs.  The total long-run effect from a change in the growth rate in population is positive and 
relatively large; a one standard deviation increase in the growth rate in population results in a 
0.277 standard deviation increase in the growth rate in prices in the host CBSA.  This can arise 
as in-migration from the neighboring CBSAs put upward pressure on prices in the host CBSA. 
Finally, a one standard deviation increase in new permits in the neighboring CBSAs results in a 
large 0.407 standard deviation decrease in the long-run growth rate in prices in the host CBSA 
(but, again, this impact is imprecisely estimated).  This could be due to out-migration from the 
host CBSA as prices fall in the neighboring CBSAs as a result of the increase in building permits 
in those areas. 
 
Thus, of the fundamentals, changes in housing supply has the largest effect on the growth rate in 
house prices at the CBSA level.  Population growth has smaller (in magnitude) direct (0.158) and 
spillover (0.277) effects but these are still economically meaningful.  But the impacts of housing 
supply and population are small compared to the price effects so there appear to be other 
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mechanisms, such as price expectations, that are important drivers of house price growth at this 
level. 
 

5.2 Town-Level 
 
We next estimate the price diffusion model using the town-level data from the Greater Boston 
Area for 1987-2012.  Figure 2 includes the real price index for the Boston CBSA.  It follows a 
similar trend as the national index; little growth between 1991 and 1997 and then a period of 
rapid growth between 1998 and 2005 followed by a drop in prices through 2011 and then a mild 
recovery where real prices are 50% higher in 2015 than they were in 1991. 
 
First we estimate the hedonic model given in equation (2).  The dependent variable is the natural 
log of house price.  House characteristics include the natural logs of lot size and living space and 
their squares, indicator variables for age less than or equal to 10 years, 10 to 30 years and 30 to 
50 years (greater than 50 years is the excluded category), indicators for 2, 3, 4, and 5 or more 
bedrooms (1 bedroom is the excluded category) , 2 or 3 or more bathrooms (1 bathroom is the 
excluded category), the number of half baths, and indicators for 5-9 rooms, 10-14 rooms, and 15 
or more rooms (3 or 4 rooms is the excluded category).   
 
We recover the town-by-year fixed effects from this regression, TOWN_FE.  We then use LWR, 
weighted by the number of transactions in each town-year, to smooth these fixed effects 
estimates.  As is typically done, we use LWR to smooth across space, LWR1.  As developed in 
Section IV, we also use a version of LWR that smooths across time and space, LWR2.  This adds 
more nearby observations that should increase the accuracy of the smooth.  This will be 
particularly useful when we use the census tract level data where there are fewer sales in a given 
period.  Also, sales in different time periods but in the same jurisdiction are likely to be closer 
approximations to the true price than are observations in other jurisdictions in the same time 
period.  Smoothing across time might be problematic given that we are estimating dynamic 
models and hence the dynamics of the smooth might contaminate the estimates of the dynamics 
of the diffusion model.  This is why we also use the kernel in only the spatial dimension (LWR1) 
as a comparison.   
 
We first use a spillover process that is based on the average of house price growth rates in 
adjacent towns.2  We exclude 3 towns from the analysis (Dunstable, Peperell, and Townsend) 
because, while they are contiguous to each other, they are not connected to the bulk of the towns 
in the dataset.  This leaves 142 towns for 26 years for a total of 3,692 observations.  Calculating 
growth rates leaves a total of 3,550 observations. 
 
We estimate the following version of the diffusion model (1) that includes fundamentals 
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2 We also weighted by the length of the border though this doesn’t improve the fit of the regression 
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where E
jtR̂G is either the growth rate based on LWR1 or LWR2 minus the growth rate for the 

Boston CBSA, EA,
tj,R̂G is the average estimated excess return for adjacent towns, and AF,

tj,R̂G is the 

average growth rate of the fundamentals for adjacent towns. Because excess returns are based on 
the growth rate for the Boston CBSA, the first year of data used to estimate equation (7) is 1992. 
  
We also consider two other sources for growth rates in town house prices.  First, we use the non-
smoothed, town-by-year fixed effects.  This allows us to evaluate the impact of using LWR. 
Second, we use the town-level house price index generated by the Boston Fed.  It is a repeat 
sales index and is constructed in a similar manner as the Case/Shiller house price index.  It is an 
annual index for 1987-2012.  Smaller towns are merged to provide enough transactions to obtain 
a reliable index.  Hence, we can compare results for two different house price indices.  Though, 
note that we cannot apply the split sample IV estimator when using the Boston Fed index. 
 
Table 2 lists the correlations between the different estimates of the town prices in the top panel 
and the correlations between the respective growth rates in the bottom panel.  The town prices 
using the sample data (LWR1, LWR2, and TOWN_FE) are very highly correlated (≥ 0.93).   
This is an indication that smoothing does not make much of a difference given that there are 
generally a lot of transactions in each town-year.  These three prices are also quite highly 
correlated with the Boston Fed index (all around 0.65).  The correlations between the four 
growth rates are all still quite high (Table 2). 
 
We estimate equation (7) with 5 own lags, 5 lags of adjacent neighbors’ average house price 
growth rates, 5 lags of the growth rates of market fundamentals that include total employment, 
population, the unemployment rate, building permits, test scores, and crime rates and 5 lags of 
adjacent neighbors’ market fundamentals.  We standardize the growth rates so that the 
coefficient estimates are comparable.  We estimate 10 models using the growth rates for LWR1, 
LWR2, TOWN_FE, and the two split sample IV versions of LWR1 (LWR1-1, LWR1-2), LWR2 
(LWR2-1, LWR2-2), and TOWN_FE (TOWN_FE-1, TOWN_FE-2) and finally for the Boston 
Fed index.3   
 
We use these results to simulate the impacts of a 1 standard deviation increase in the GBA 
market growth rate.  The long-run impacts from this simulation exercise are given in Table 3.  
Standard errors for the four estimators using the full sample are bootstrapped.   Since the sample 
is split randomly for the two split sample IV estimators, we carry out the randomization 100 
times and take the average of the resulting point estimates.  Standard errors are based on these 
100 point estimates. 
 
The long-run persistence impacts for LWR1, LWR2, and TOWN_FE are clearly negatively 
biased and this is corrected using the split sample IV estimator.  Note that there are two versions 

using 1
jtR̂G and 2

jtR̂G  as the dependent variables in equation (7).  Reassuringly, the results using 

these two estimators are very similar.  What is clear is that once this bias is corrected using split 
sample IV, all of the estimates (persistence, spillover, and total) are small in magnitude and none 
are significantly different from zero at the 5% level.  So in this case, smoothing, either over 
                                                            
3 The regression results for the four estimators using the full sample are available upon request. 
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space (LWR1) or over time and space (LWR2), does not produce different results than just using 
the town fixed effects (TOWN_FE). 
 
Finally, the results based on the Boston Fed index appear to be biased though not to the extent of 
the other three estimators that use the full sample.  We cannot mitigate this bias using the split 
sample IV estimator since we do not have access to the individual transaction data used to 
estimate the Boston Fed index. 
 
The yearly persistence, spillover, market, and total impacts are displayed in Figures 5a and 5b for 
the two split-sample estimators LWR1-1 and LWR2-1.  The two figures are quite similar.  There 
is little heterogeneity across years in either figure.  This shows that both the yearly and long-run 
impacts are small. 
 
One reason that the estimated town spillover effects are generally small and not significant might 
be that the towns that are likely to cause spillovers are not adjacent towns but towns that are 
closer substitutes in terms of the level of local public goods provided.  If prices rise in one town, 
then potential new residents might choose to live in other towns that are similar in terms of 
school quality and other local public goods rather than the town “next door.”  To capture this 
avenue for town spillover effects, we generate a measure of a town’s amenities, say town A, and 
then choose the town with the most similar level of amenities, say town B, as the town with 
house prices changes that are most likely to affect those in town A.  The measure of town 
amenities we use is the town fixed effect that is estimated from the house price hedonic equation 
(2) where the fixed effect does not vary by year.  That is, we use the full sample but only 
generate one fixed effect for each town.  One can view this fixed effect as the dollar value of the 
town amenities.  Then town B is the one with a fixed effect that is closest to that for Town A. 
The “distance” between towns A and B is the absolute value of the difference in town fixed 

effects.  Then EA,
tj,R̂G in equation (7) is the excess return in town B divided by this distance 

measure.4 We re-estimate the price diffusion equation (7) using this town spillover variable.  
Though the town spillover effects are larger, they are still relatively small and not significant. 
 
Given that the spillover effects are small, we do not estimate the ripple effect.  We also allowed 
the coefficient estimates to differ for positive and negative growth rates but this has little effect 
on the results so we do not report them here.  
 
Next, we simulate the impacts of a 1 standard deviation increase in the fundamentals on house 
price growth rates.  These include the impacts due to fundamentals in the same town and the 
spillover effects from a 1 standard deviation increase in the fundamentals in adjacent towns.  The 
results are listed in Table 4 for the split sample IV versions of LWR1 (LWR1-1, LWR1-2), 
LWR2 (LWR2-1, LWR2-2), and TOWN_FE (TOWN_FE-1, TOWN_FE-2).  Given that the split 
sample results are similar, we take the average and hence there is only one result presented for 
each of the three estimators.  Again, standard errors are bootstrapped.  Similar to the CBSA 
analysis, the impacts include Fundamental, Persistence, Price Spillover, and Total effects.  
Generally, the Persistence and Price Spillover (indirect) effects are very small and not 

                                                            
4 Zabel and Dalton (2011) use a similar approach in calculating monopoly zoning power as a means for determining 
which towns are most able to sustain a price increase that results from stricter land use regulations. 
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significant.  The only case where the direct Fundamental effect is significant and of a reasonable 
magnitude is for the unemployment rate.  The direct effect of a 1 standard deviation increase in 
the change in the unemployment rate in the same town is negative and significant in one of the 
three cases (-0.23) whereas the direct effect of a 1 standard deviation increase in the change in 
the unemployment rate in adjacent towns is positive, significant and relatively large 
(approximately 0.4).  The latter could result from an increase in the demand for housing in the 
hub town as the perceived quality of the adjacent towns diminishes (quality as embodied in 
neighbors; employed neighbors are of higher quality than are unemployed neighbors; and greater 
employment opportunities in the hub town draws away productive workers from other towns). 
    
These impacts result from isolated changes in the hub town or the adjacent towns.  A change in 
fundamentals at the MSA level would result in changes in all towns.  The resulting impacts 
would then be the sum of the direct and spillover effects due to changes in the fundamentals. 
Generally, the direct and spillover effects counteract each other so that the overall impact of a 
change in fundamentals is even smaller (in magnitude).  The only case where the impacts are 
reinforcing is crime.  An increase of one standard deviation in the crime rate change in the MSA 
will reduce the growth rate in prices in all towns by around 0.15 standard deviations (significant 
at the 1% level). 
 

5.3   Census Tract-Level 
 
Using census tract-level data allows for spillovers within and across towns.  We need to address 
the problem that census tracts change over time; they can split or merge at each decennial 
census.  Using GIS, we determined the largest origin tract as the consistent tract. For example, if 
tract A splits into B and C in 2000 we use A as the consistent tract and aggregate sales in B and 
C starting in 2000.  We refer to these as consistent census tracts. 

We have data on single family transactions for 535 consistent census tracts in the Greater Boston 
Area with at least one sale in each year for 1987-2012.  But we must have at least two 
transactions each period for the split-sample IV estimator to work.  There are 492 consistent 
census tracts with at least two sales in each year for 1987-2012. 

The version of the diffusion model that we estimate is 
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where E
cjtR̂G is the estimated excess return in census tract c, town j and time t (the growth rate 

minus the growth rate for the Boston CBSA), ETR,-A
cjtR̂G is the average estimated excess return for 

other census tracts in the same town, and ETO,
cjtR̂G is the estimated excess return for the town with 
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the most similar amenities.5  Again, because we use the growth rate for the Boston CBSA to 
calculate excess returns, the first year of data used to estimate equation (8) is 1992.6 
 
We estimate equation (8) with 5 own lags and 5 lags of the mean growth rate of the other census 
tracts in the same town and of the house price growth rate of the nearby town.  Growth rates are 
standardized so that the coefficient estimates are comparable.  We provide the estimation results 
for LWR1, LWR2, and TRACT_FE and for the corresponding two split sample IV estimators.   
 
We use the regression results to simulate the impacts of a 1 standard deviation increase in the 
market growth rate.  The long-run impacts from this simulation exercise are given in Table 4.   
Standard errors for the three estimators using the full sample are bootstrapped.   Since the sample 
is split randomly for the two split sample IV estimators, we carry out this randomization 50 times 
and take the average of the resulting point estimates.  Standard errors are based on these 50 point 
estimates. 
 
Interestingly, the biased (full sample) estimators give very different results; the total effect based 
on LWR1 is -0.051 and not significant, that based on LWR2 is 0.600 and significant, and that 
based on TOWN_FE is -0.493 and significant.  The results using the split sample IV estimators 
are much more similar.  The total effects for the split sample IV estimators based on LWR1 and 
LWR2 are all approximately 0.35.  Despite the similarity in the total effects estimates, 
differences do exist between LRW1 and LRW2 in terms of the persistence and spillover effects.  
First, the persistence effect estimates using LWR1 are positive but small and insignificant 
whereas the ones using LWR2 are negative and significant at the 5% level.  The estimates of the 
tract-level spillover effects are all positive and significant though the ones using LRW2 are 
larger.  The estimates of the town-level spillover effects are very similar; positive and small in 
magnitude though three of the four are significant at the 10% level or better.   
 
The biggest driver of the total effects are the positive, (relatively) large, and significant tract-
level spillover effects; the range is 0.22 – 0.39.  Note that we have determined the nearby town to 
measure spillover effects as the closest substitute in terms of the level of local public goods.  
Other census tracts in the same town can be viewed as perfect substitutes as they have the same 
amenities.  Hence the significant tract-level spillover effects make sense in this context.  This is 
also consistent with other literature on “neighborhood effects” such as Rosenthal (2008). 
Specifically, he describes how similarities in homeowner educational attainment and/or 
economic status can attract others who are looking for similar “attractive” nearby neighborhoods 
to live in, which can be a source of spillovers across very local areas. 
 
The split sample IV estimates of the total effects using the town fixed effects are a third the size 
of those based on the smoothed estimators.  This contrasts to the results using the town-level data 
where the results are similar.  This is likely due to the small number of annual sales per census 
tract that are used to estimate the census tract fixed effects, the annual mean is 39 sales, 

                                                            
5 In the town-level analysis, we proposed two approaches for determining nearby towns that were used to estimate 
spillover effects.  One was based on adjacent towns and one was based on the town with the most similar amenities.  
We report the results for the latter as they provide larger estimates of the town-level spillover effects.   
6 We don’t include fundamentals in the tract-level model since they are measured at the town level and hence their 
impacts would be the same as in the town-level model. 
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compared to the larger number used to estimate the town fixed effects;  the mean of annual sales 
is 170.  So it appears that the smoothed estimator is particularly valuable when estimating price 
indices and growth rates for small areas such as census tracts.  
 
Note that, like the town-level results, the persistence and town spillover effects are generally 
small in magnitude.  The big difference from using the tract-level data is the ability to measure 
the tract-level spillovers.  It appears that aggregating the data to the town level misses important 
dynamics of growth rates that occurs within towns at the census tract level.   
 
One mechanism by which local price shocks can spread is through the process by which 
appraisers value houses.  Similarly, information about nearby house prices can disseminate 
quickly with the increasing popularity of Zillow.com ®, Trulia.com ®, etc. That is, appraisers, 
real estate agents, and these websites use transactions from nearby units or “comps” as a means 
for valuing units.  In this case, the comps are probably confined to sales in the same town.  This 
would help explain the significant tract-level spillovers and small town-level spillovers.  
Furthermore, real estate agents may well follow a similar procedure when valuing units and/or 
when advising clients about list prices. So, if one part (tract) of a town shows significant price 
increases, agents probably advise clients to purchase houses in other parts of the town.  This 
would contribute to the tract-level spillovers.  
 
The yearly persistence, spillover, and total impacts are displayed in Figures 6a and 6b for split-
sample estimators LWR1-1 and LWR2-1.  The long-run impacts, which are fairly similar, mask 
some heterogeneity in the yearly values.  For example, the first-year persistence effect estimated 
using LWR2-1 is relatively large and positive (0.235) and significant whereas the second-year 
persistence effect is similar in magnitude but negative (-0.201) and significant.  Whereas the 
persistence effects estimated using LWR1-1 are less than half these impacts (in magnitude).  The 
first-year and second-year tract-level spillover effects estimated using LWR2-1 are positive and 
significant (0.119 and 0.156) while only the first-year effect is significant when using LWR1-1 
(0.164).  
 
Overall, it is not clear that smoothing across space and time (LWR2) is an advantage over just 
smoothing across space only.  While there are some differences in the persistence and tact-level 
spillover effects, the long-run total effects are almost identical.  More examples are needed to 
determine if adding the time dimension to the smoothing kernel is advantageous. 
 
 

6. Conclusion 

This paper investigates the movement of house price growth (shocks) over time and space at 
three different levels of aggregation: CBSA, town, and census tract.  At each level of aggregation 
we estimate fixed effects models for growth rates on lagged growth rates in prices and 
fundamentals and lagged growth rates in price and fundamentals for nearby jurisdictions.  We 
use the results to simulate impacts of shocks to growth rates to calculate short-run and long-run 
persistence and spillover effects. 
 
For the CBSA model, the estimated long-run persistence and spillover effects are positive, large, 
and significant; 0.565 and 0.802 standard deviations, respectively.  The result for the persistence 
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effect is generally consistent with the stylized facts in Glaeser et al (2014); the impact is positive 
for the first 7 quarters then is mostly negative after that and the long-run effect is positive.  In 
terms of the fundamentals, only the change in housing supply has a large effect; the direct effect 
is -0.530 and the spillover effect is -0.407 (though neither is statistically significant). 
 
We also look at the ripple effect that results from a 1 standard deviation increase in the growth 
rate of a single CBSA.  The estimated total impact on prices in the nearest CBSA is a 0.460 
standard deviation increase in prices and in the next CBSA it is 0.156.  If there are persistent 
large shocks, the ripple effect can be substantial.  This significant contagion effect can help 
explain the recent housing downturn that reached the national level. 
 
To estimate the diffusion process at a more local level, we use annual transaction data for the 
Greater Boston Area.  We estimate the diffusion model at both the town and census tract level to 
determine the impact of aggregation on the diffusion process.  The diffusion model results is 
biased estimates because there is an induced negative correlation in the estimated growth rate 
and its lag due to a common residual.  The solution proposed by Case and Schiller (1989) is a 
split sample IV estimator.  We use this estimator and do find that the usual fixed effects 
estimator results in negatively biased estimates of the persistence effects (the coefficient 
estimates for the lagged growth rates).  We find little evidence of persistence or spillover effects 
at the town level whereas there is evidence of significant tract-level spillovers.  Hence, 
aggregating the data to the town level can miss interesting dynamics that occur with towns.   
 
In terms of fundamentals, only the changes in the town unemployment rate has a statistically and 
economically significant impact on price growth. These total impacts are positive, implying that 
house price growth falls as unemployment rates in nearby towns fall. This may support the 
notion that agglomeration due to improved matching opportunities could be driving nearby house 
price growth. In other words, agglomeration economies in some of the larger towns may be 
drawing the more productive residents from other towns to work and live in those larger towns, 
which may be dampening house prices in the more distant towns.  When  
 
 When there is a change in fundamentals at the MSA level, the direct and spillover effects 
counteract each other so that the overall impact of a change in fundamentals is even smaller (in 
magnitude).  The only case where the impacts are reinforcing is crime.  The impact a decrease in 
the growth rate of prices by around 0.15 standard deviations (significant at the 1% level). 
 
In the Introduction, we said that we would answer the following questions that relate to the 
heterogeneity of the diffusion process.  Does the house price diffusion process depend on: 
 

1. The aggregation level of the data? 
2. The frequency of the data? 
3. Positive versus negative price shocks (asymmetric response)? 
4. Supply-side factors (ease of building)? 
5. Economic and demographic fundamentals? 
6. Location; is the spillover effect different across borders of jurisdictions such as 

census tract or towns?   
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7. At the local level, does the spillover effect arise from nearby towns as determined by 
distance or by similarity of local public goods? 

 
The answers are: 
 

1. We find evidence that the aggregation level of the data can affect the estimates of the 
persistence and spillover effects; the results at the town level can obscure spillover 
effects at the census tract level.   

2. Our annual estimates of the spillover effects using the CBSA data are much smaller 
than when using the quarterly estimates.  This is evidence that estimating the 
diffusion model at different frequencies can produce different results. 

3. We find some evidence of asymmetric responses in the long-run persistence effects 
although the period-by-period patterns are fairly similar until the last few periods; 
though, of course, opposite in sign.  This difference can result from the fact that there 
can be a positive supply-side response to the positive price shock but not a 
commensurate negative supply-side response to the negative price shock.    

4. We find that spillover effects are large in CBSAs with high price elasticities of 
housing supply and are not significant in CBSAs with low pries elasticities of housing 
supply.   

5. Of the economic, and demographic fundamentals, we find that changes in housing 
supply and population growth affect house price growth rates at the CBSA level, 
whereas changes in the unemployment rate and crime affect house price growth rates 
at the town level. Perhaps agglomeration economies due to labor market matching are 
underlying these unemployment drivers of diffusion.  

6. We find evidence of relatively large and significant within-town spillovers at the 
census tract-level but little evidence of cross-town spillovers. 

7. Using growth rates in nearby towns based on the similarity of local public goods 
produce somewhat larger but still insignificant town-level spillover effects cpmpared 
to those based on adjacent towns when using the tract-level data. 
 

The persistence and spillover effects that we estimate at the CBSA level are much larger than 
those estimated at the local level.  Why are these estimates of the diffusion process so different 
across aggregation levels?  One reason is that, because we do not have the transaction-level data 
that are the basis of the CBSA-level price indices, we cannot apply the split sample IV estimator.  
But it is noteworthy that the standard fixed effects estimator of the persistence effects will be 
negatively biased so that, if anything, the true CBSA-level persistence effects are larger than our 
estimates.  The bias in the spillover effects when using the fixed effects estimator is less clear.  
The results from the town- and tract-level analyses show that there might be a positive bias 
though it does not appear to be as large in magnitude as the bias in the persistence estimates.  It 
appears that it is not just the bias in the estimators that can explain the differences in the 
persistence and spillover effects at the CBSA and local levels 
 
The evidence indicates that  price diffusion operates across CBSAs and not as much across 
towns within CBSAs.  If we think of CBSAs as housing markets, we find evidence of price 
diffusion across markets versus within markets.  That is, while there is clearly variation in price 
growth within CBSAs, this doesn’t significantly affect growth rates in nearby towns.  But there 
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is some evidence of spillovers across tracts within towns.  One can view that as information 
spillovers operating within towns (maybe via real estate agents and/or information available on 
the internet) or by the way appraisers value houses in their towns. 
 
There is some evidence that changes in fundamentals, housing supply and population, affect 
house price growth rates as the CBSA level.  But these impacts are smaller than the estimated 
persistence and spillover price effects.  It is likely that irrational price expectations fuel price 
effects across CBSAs (and not as much with CBSAs).  This gives credence models of 
“irrational” bubbles based on households’ over-optimism about future house prices (Glaeser et 
al. 2008).   
 
Given that the Greater Boston Area housing market is not representative of the all housing 
markets in the U.S., this analysis should be replicated in other housing markets to determine if 
the within-market diffusion process estimated here is similar in housing markets.  Clearly more 
research is needed to explain the differences in across-market and within-market persistence and 
spillover effects. 
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Table 1 – Long Run Impacts from a 1 SD Increase in the  
Fundamentals:  CBSA-Level Diffusion Model   

Impact  Income  Employment  Population  Permits 
Panel A: Direct Effect 
Fundamental  0.150  0.062  0.092  0.006 
  (0.094)  (0.115)  (0.097)  (0.276) 
Persistence  0.015  0.007  0.010  -0.291 
  (0.045)  (0.052)  (0.054)  (0.209) 
Price Spillover  -0.012  -0.037  0.055  -0.245 
  (0.037)  (0.042)  (0.049)  (0.259) 
Total  0.153  0.032  0.158  -0.530 
  (0.119)  (0.154)  (0.133)  (0.464) 
Panel B: Spillover Effect 
Fundamental  -0.071  -0.117  0.177  -0.218 
  (0.108)  (0.119)  (0.121)  (0.338) 
Persistence  0.010  -0.023  0.064  -0.164 
  (0.051)  (0.054)  (0.046)  (0.224) 
Price Spillover  0.037  0.015  0.035  -0.025 
  (0.033)  (0.038)  (0.043)  (0.187) 
Total  -0.024  -0.126  0.277  -0.407 
  (0.144)  (0.160)  (0.162)  (0.454) 
Note: bootstrapped standard errors are in parentheses  
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Table 2 
Correlations for Town Prices and Growth Rates 

Correlations for Town Prices 
LWR1 LWR2 Town_FE 

LWR2 0.96 
Town_FE 0.93 0.98 
Boston_Fed 0.67 0.64 0.63 

Correlations for Town Growth Rates 
 DLWR1 DLWR2 DTown_FE 
DLWR2 0.80   
DTown_FE 0.70 0.72  
DBoston_Fed 0.65 0.67 0.69 
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Table 3 – Long Run Impacts from a 1 SD Increase in the  
Market Growth Rate:  Town-Level Diffusion Model   

Model  Persistence  Spillover  Total 
LWR1  -1.131  0.610  -0.522 
  (0.000)  (0.000)  (0.000) 
LWR1 – 1  -0.014  0.044  0.030 
  (0.166)  (0.112)  (0.125) 
LWR1 – 2  0.015  0.040  0.055 
  (0.138)  (0.094)  (0.108) 
LWR2  -0.749  0.351  -0.398 
  (0.000)  (0.000)  (0.000) 
LWR2 – 1  -0.021  0.031  0.010 
  (0.113)  (0.086)  (0.142) 
LWR2 – 2  -0.045  0.048  0.003 
  (0.116)  (0.061)  (0.125) 
TOWNFE  -0.642  0.340  -0.302 
  (0.000)  (0.000)  (0.000) 
TOWNFE - 1  0.030  0.081  0.111 
  (0.085)  (0.038)  (0.074) 
TOWNFE - 2  0.035  0.064  0.099 
  (0.089)  (0.048)  (0.079) 
Boston Fed  -0.263  0.140  -0.124 
  (0.008)  (0.060)  (0.069) 
p-values in parentheses (calculated using bootstrapped standard 
errors for LWR1, LWR2, TOWNFE, and Boston Fed, 
calculated based on 100 randomly drawn split samples for 
LWR1-1, LWR1-2, LWR2-1, LWR2-2, TOWNFE-1, and 
TOWNFE-2)  
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Table 4 - Long Run Impacts from a 1 SD Increase in 

Fundamentals: Town-Level Diffusion Model 
 Fundamental Persistence Price Spillover Total 

Estimator  Population Growth Rate 
LWR1  -0.001 -0.001 -0.004 -0.006 
LWR2   0.049  0.000 -0.002  0.048 
TOWNFE   0.051  0.002 -0.013*  0.040 
  Population Growth Rate Spillover 
LWR1  -0.077 -0.004 -0.001 -0.082 
LWR2   0.008  0.002  0.002  0.012 
TOWNFE  -0.126*** -0.006 -0.001 -0.132* 
  Employment Growth Rate 
LWR1  0.002  0.000 0.001 0.003 
LWR2  0.045 -0.002 0.004 0.047 
TOWNFE  0.027  0.001 0.001 0.029 
  Employment Growth Rate Spillover 
LWR1  0.044  0.001 0.000 0.045 
LWR2  0.081** -0.002 0.003 0.082** 
TOWNFE  0.014  0.001 0.002 0.017 
  Single Family Permits 
LWR1  0.016 0.000 0.001 0.016 
LWR2  -0.001 -0.004 0.005 0.000 
TOWNFE  -0.021 -0.001 -0.001 -0.022 
  Single Family Permits Spillover 
LWR1  0.049 -0.001 0.002 0.049 
LWR2  0.067** -0.008 0.001 0.060* 
TOWNFE  0.049** 0.000 0.000 0.049** 
  Unemployment Rate Change 
LWR1  -0.132 -0.006 0.005 -0.133 
LWR2  -0.292 0.000 0.027 -0.265 
TOWNFE  -0.230** -0.010 0.024** -0.217** 
  Unemployment Rate Change Spillover 
LWR1  0.240* 0.007 -0.003 0.244* 
LWR2  0.418** 0.001 -0.016 0.403** 
TOWNFE  0.342*** 0.014 -0.016* 0.340* 
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Table 4 - Continued 
  Fundamental Persistence Price Spillover Total 
  Test Score Change 
LWR1  0.038 0.001  0.002 0.041 
LWR2  0.021 0.000 -0.001 0.020 
TOWNFE  0.017 0.000  0.001 0.019 
  Test Score Change Spillover 
LWR1   0.036 0.001 0.002  0.039 
LWR2  -0.010 0.000 0.002 -0.008 
TOWNFE   0.012 0.000 0.003  0.015 
  Crime Change 
LWR1  -0.043 -0.001 -0.004 -0.048 
LWR2  -0.045 0.000 -0.004 -0.049 
TOWNFE  -0.086** -0.004 -0.003 -0.092* 
  Crime Change Spillover 
LWR1  -0.121*** -0.004 -0.002 -0.127* 
LWR1  -0.060 0.000 -0.004 -0.064 
TOWNFE  -0.065** -0.003 -0.003 -0.071** 
Notes: standard errors are bootstrapped,  
*,**,***; p-value < 0.1, <0.05, <0.01, respectively 
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Table 5 – Long Run Impacts from a 1 SD Increase in the  
Market Growth Rate:  Tract-Level Diffusion Model  
 

Model Persistence 
Spillover-

Tract 
 Spillover-

Town Total 
LWR1 -0.868  0.756  0.061  -0.051 
 (0.000)  (0.000)  (0.001)  (0.168) 
LWR1 – 1 0.047  0.220  0.040  0.307 
 (0.597)  (0.096)  (0.293)  (0.009) 
LWR1 – 2 0.040  0.274  0.054  0.368 
 (0.653)  (0.016)  (0.072)  (0.000) 
LWR2 -0.027  0.489  0.139  0.600 
 (0.477)  (0.000)  (0.000)  (0.000) 
LWR2 – 1 -0.097  0.366  0.061  0.330 
 (0.039)  (0.000)  (0.002)  (0.000) 
LWR2 – 2 -0.107  0.391  0.065  0.349 
 (0.048)  (0.000)  (0.002)  (0.000) 
TOWNFE -1.122  0.614  0.014  -0.493 
 (0.000)  (0.000)  (0.162)  (0.000) 
TOWNFE - 1 -0.074  0.170  0.013  0.109 
 (0.217)  (0.000)  (0.386)  (0.047) 
TOWNFE - 2 -0.087  0.202  0.017  0.131 
 (0.107)  (0.000)  (0.157)  (0.022) 
p-values in parentheses (calculated using bootstrapped standard errors 
for LWR1, LWR2, TOWNFE, and Boston Fed, calculated based on 
100 randomly drawn split samples for LWR1-1, LWR1-2, LWR2-1, 
LWR2-2, TOWNFE-1, and TOWNFE-2)  
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Figure 3 
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Figure 4 
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Figure 5a 
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Figure 5b 
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Figure 6a 
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Table A1 - Summary Statistics for Hedonic Variables 
Variable Mean Std.Dev. Minimum Maximum 
Real Sale Price ($2012 in thousands)  406.95 238.04 27.34 2097.04 
House Age 43.96 35.12 0.00 200.00 
Number of Bedrooms 3.31 0.82 1.00 10.00 
Number of Bathrooms 1.71 0.74 1.00 10.00 
Number of Half Baths 0.61 0.54 0.00 8.00 
Total Number of Rooms 7.01 1.61 3.00 23.00 
Living Area (100s sf) 19.65 8.54 5.00 79.99 
Lot Size (acres) 0.62 0.78 0.10 10.00 
Number of Observations 639,859    
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Table A2:  Town-level Diffusion Equation Results 
 Dependent Variable (Growth Rate) 
Variables LWR1 LWR2 Town FE Boston Fed 
Own Lags (1) (2) (3) (4) 
L1 -0.491 -0.367 -0.281 -0.031 
 (0.042)** (0.042)** (0.035)** (0.040) 
L2 -0.197 -0.121 -0.072 0.018 
 (0.046)** (0.040)** (0.033)* (0.034) 
L3 -0.073 -0.078 -0.022 0.099 
 (0.035)* (0.029)** (0.025) (0.032)** 
L4 -0.115 -0.057 -0.005 -0.068 
 (0.063) (0.028)* (0.020) (0.027)* 
L5 -0.090 -0.058 -0.055 -0.167 
 (0.024)** (0.025)* (0.026)* (0.023)** 
Adjacent Lags     
L1 0.011 0.006 -0.003 0.017 
 (0.011) (0.013) (0.015) (0.029) 
L2 0.014 0.026 0.045 0.040 
 (0.027) (0.019) (0.016)** (0.021) 
L3 0.023 0.004 0.039 0.052 
 (0.014) (0.010) (0.010)** (0.016)** 
L4 0.009 0.019 0.010 -0.075 
 (0.026) (0.006)** (0.008) (0.025)** 
L5 0.009 -0.005 -0.033 -0.007 
 (0.018) (0.008) (0.007)** (0.014) 
Constant 0.044 0.042 0.023 0.007 
 (0.003)** (0.002)** (0.002)** (0.004) 
R-squared 0.20 0.12 0.08 0.04 
Observations 2,272 2,272 2,272 2,272 
Number of dorcodes 142 142 142 142 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Figure A1 
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