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Abstract

We develop a nonparametric, locally-weighted Inverse Probability Tilting (IPT-LW) estimator, which

allows for average treatment e�ect (ATE) heterogeneity as in Belloni et al (2017), and addresses �mis-

sing data� problems when data vary geographically. IPT-LW re-weights twice: using propensity scores

that equate moments across treated (and untreated) sub-samples with the entire sample, as in Graham

et al (2012); and also, down-weighting observations far from each target point. This allows for hete-

rogeneous (or local) ATE estimates. Monte Carlo simulations validate IPT-LW's strong small sample

performance. Among many possible applications of this IPT-LW estimator, we demonstrate how an

extended water-boil advisory, imposed much longer on some sub-sections of Metro-Vancouver Canada,

impacted individual commercial property price ATEs di�erently.
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1 Introduction

Two increasingly popular areas of focus in recent applied statistical research are average tre-

atment e�ect heterogeneity (or �local average treatment e�ects� , as in Belloni et al, 2017),

and missing data problems. We propose a methodology to address both of these issues in one

framework, when there are data available on the geographic locations of observations.

One set of approaches to missing data problems in general settings is propensity score ap-

proaches. There is an extensive body of literature on Inverse Probability Weighting (IPW),

as in Imbens (2004) and Wooldridge (2007), and more recently, a methods-of-moments based

approach called Inverse Probability Tilting (IPT), as in Graham et al (2012).

Some recent research has focused on speci�c types of missing data problems and some have

addressed them with methods-of-moments approaches. For instance, Abrevaya and Donald

(forthcoming) consider a situation where some observations on an explanatory variable are

missing, and they develop a methods-of-moments estimator to handle this problem.

One objective of this paper is to consider a second adjustment for missing data problems as

a part of the estimation strategy � speci�cally, re-weighting that allows for geographic heteroge-

neity in a cross sectional context, in addition to a propensity score approach for the missing data

problem. The attractive features of IPT that rely on a methods-of-moments procedure, opposed

to a Maximum Likelihood approach (as in IPW), have prompted us to explore a generalization

of IPT. This type of additional adjustment is important in the context of many treatment e�ect

problems, because the ATE at one geographic location can be di�erent than the ATEs at other

locations.

In particular, the issue of ATE heterogeneity has received some recent attention. While

one advantage of IPT is that it leads to a unique treatment e�ect for each observation, it may

also be desirable to consider geographic heterogeneity that could lead to di�erent ATEs across

each individual observation. Bitler et al (forthcoming) demonstrate that using constant mean-

impacts in the treated versus untreated subgroups ignores much of the heterogeneity in these

two subgroups. In such situations, an approach to deal with the missing data problem while

preserving heterogeneity in ATEs across geographic locations is desirable. Belloni et al (2017)
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develop a �local average treatment e�ects� estimator that addresses the desirability of allowing

for ATE heterogeneity. Thus, a second objective of our research is to demonstrate how a general

version of the IPT approach that considers geographic variation in the data can address the

missing data problem while at the same time allowing for heterogeneity in the ATEs across

geographic space to be brought out.

We demonstrate the use of our estimator with one particular application of commercial

property sales, where a treatment is imposed on some properties in a geographic region, but

neither on others in the same region nor upon any properties in a neighboring region. With

this particular missing data problem, the researcher knows what price a given property sold for

at one location, but does not know how much the same property would have sold for if it had

been in a di�erent location. While this is the speci�c application that we consider in this paper,

there are many other potential applications of IPT-LW, in contexts where there is geographical

variation in the data and a treatment that is imposed on units in some locations after a random

event, but not in others.

In the remainder of this paper, we �rst motivate one type of missing data problem (although

our estimator can be applicable to a broad range of other missing data problems). Next we

explain our innovations to the IPT estimator that incorporates geographic heterogeneity, and

the adjustments to the propensity score weights we make to allow for more distant observations

to be down-weighted relative to more close observations. We call this an IPT-LW estimator

(representing �Inverse Probability Tilting-Locally Weighted�). We describe the computation

process of the IPT-LW estimator, then provide some Monte Carlo evidence to demonstrate that

our estimator performs well. We demonstrate the use of this IPT-LW estimator with one speci�c

application of how commercial property prices in the metro-Vancouver, BC Canada region may

be impacted di�erently, shortly before versus after a storm leading to an extended water-boil

advisory that is imposed on some parts of the region for much longer than other areas. Finally,

we discuss potential future extensions to our approach and summarize our �ndings.
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2 Motivation

Consider the following general problem. First, suppose one is interested in analyzing a data set

on units that are in various locations throughout a particular geographic region, to determine

the local ATEs shortly after versus shortly before a random �event� . If the treatment area is

con�ned to the borders of a particular city in a metro area, for instance, we might consider

focusing attention on �treated� observations as a set of those that are on the �inside� of the

city limits after the �event� . The �untreated� observations are a set of units that are on the

�outside� of the city limits, e.g., those observations in a neighboring city, before and after the

�event� as well as those within the city limits before the �event� . Then, we can estimate the

e�ect of being in the treatment sub-sample opposed to the non-treated sub-sample, assuming

that there are no missing data.

But we know for many empirical applications that the treatment is observed contingent on

the location of the observations. In other words, it is not known what the treatment outcome

would have been if a particular unit had been located elsewhere. In these cases, in order

to obtain valid treatment e�ects, one can re-weight the data with propensity scores. There

are several approaches to accomplishing this. One is an Inverse Probability Weighting (IPW)

approach, which has received extensive attention in the literature (see, e.g., Imbens (2004),

among others). IPW uses Maximum Likelihood estimation techniques to obtain the propensity

score weighting parameters. An attractive alternative is the Inverse Probability Tilting (IPT)

approach, as in Graham et al (2012), which is based on a relatively straightforward moments

condition technique. The advantages of IPT include that the GMM approach does not assume

normality of the error terms, however Graham et al (2012) demonstrate that the ATE is normally

distributed; and the IPT approach generates separate tilting parameters for the treated and

untreated samples.

The IPT and IPW approaches do not allow for geographic heterogeneity in the ATEs and

the tilting parameters. If the geographic locations of observations are varied, this could be an

important consideration in many particular applications. While it may be possible to include

geographic coordinates directly as control variables in the IPT estimation, this would violate the
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�strong overlap� assumption of Graham et al (2012). Therefore, as an attractive alternative to

including geographic coordinates directly as IPT control variables, it may be helpful to re-weight

a second time, to consider the geographic distance between observations. This is common in

the non-parametric estimation literature, speci�cally, with an approach called Locally Weighted

Regressions (LWR). McMillen and Redfearn (2010) describe LWR and present an application.

Belloni et al (2017) have developed an local ATE estimator. However, no known work has

incorporated locally weighted estimation into an IPT framework.

3 Approach

3.1 Model

Suppose that there are N units, indexed by i = 1, . . . ,N, viewed as drawn randomly from

a large population. We postulate the existence for each unit of a pair of potential outcomes,

Yi(0) for the outcome under the control treatment and Yi(1) for the outcome under the active

treatment. In addition, each unit has a vector of covariates, pretreatment variables or exogenous

variables, and denoted by Xi. Each unit is exposed to a single treatment; Di = 0 if unit i is

untreated and Di = 1 if unit i receives the active treatment. We therefore observe for each unit

the triple (Di, Yi, Xi), where Yi is the realized outcome:

Yi ≡ Yi(Di) =


Yi(0) if Di = 0,

Yi(1) if Di = 1.

Distributions of (Di, Yi, Xi) refer to the distribution induced by the random sampling from the

population. The average treatment e�ect (ATE) is

γATE0 = E[Y (1)− Y (0)].

In practice, however, one only observes

Yi = (1−Di)Yi(0) +DiYi(1)
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i.e., only Yi(1) for actively treated units and Yi(0) for untreated units. One common practice in

this case is to adjust the two sub-samples based on their own distributions.

3.2 Inverse Probability Tilting Estimator

Some additional notation will be useful in the remainder of this paper. Let N1 and N0 denote the

number of treated units and untreated units, respectively. The propensity score (Rosenbaum

and Rubin, 1983) is de�ned as the conditional probability of receiving the treatment,

p(x) = Pr(Di = 1|Xi = x) = E[Di|Xi = x].

Imbens (2004) and Wooldridge (2007) propose the inverse probability weighting ATE estimator

as

γ̂ATEIPW =
1

N

N∑
i=1

 Di

G
(
(t(xi)′δ̂ML

) − 1−Di

1−G
(
t(xi)′δ̂ML

)
Yi (1)

where G(t(x)′δ0) = p(x) for all x ∈ X and some δ0, t(x) is a 1 +M column vector of known

functions of X with a constant as its �rst element, and δ̂ML is a vector of maximum likelihood

estimates of δ0.

Graham et al (2012) propose an alternative method to (1) by replacing the δ̂MLwith a par-

ticular method of moments estimator consisting of two separate tilting parameters, instead of

the single tilting parameter with IPW. The two sets of propensity scores, one set for each obser-

vation in the treatment group and another for observations in the control group, are estimated,

based on the following assumptions (for a more formal presentation of these assumptions, see

Graham et al, 2012):

Assumption 3.1: Identi�cation. There must be one unique solution to the moment conditions

that generate the average treatment e�ect estimator, γ̂IPT .

Assumption 3.2: Random Sampling. The treatment dummy, the control variable(s), and the

outcome variable are independently, identically distributed random sequences.

Assumption 3.3: Missing at Random. The probability of being treated, conditional on the

control variable(s), is independent of the outcome variable of the treated sample.

Assumption 3.4: Strong Overlap. The probability of being treated given the control vari-
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able(s) should be nonzero and less than or equal to 1. In other words, there should be some

overlap in the control variable(s) in both the treated and untreated samples.

Assumption 3.5: Propensity Score Model. There exist a well-behaved function G(v) and

unique propensity score parameters, δ0 and δ1, that de�ne p(x). Graham et al (2012) indicate

that omitting this assumption does not impact the asymptotic properties of the estimated ATE.

Given these �ve assumptions, we now discuss the IPT estimation. For the treatment group,

let δ̂1IPT , be the solution to

1

N

N∑
i=1

 Di

G
(
(t(xi)′δ̂1IPT

) − 1

t(xi) = 0. (2)

Rearranging (2) we have

N∑
i=N0+1

1

G
(
(t(xi)′δ̂1IPT

)t(xi) = 1

N

N∑
i=1

t(xi).

Meanwhile, for the control group, let δ̂0IPT be the solution to

1

N

N∑
i=1

 1−Di

1−G
(
(t(xi)′δ̂0IPT

) − 1

t(xi) = 0. (3)

Rearranging (3) we have

N0∑
i=1

1

1−G
(
(t(xi)′δ̂0IPT

)t(xi) = 1

N

N∑
i=1

t(xi).

Thus, the motivation of the IPT estimator is to choose the propensity score estimator to equalize

the mean and the variance of t(xi) (note that higher moments of x can be included in t(xi) )

across treated units as well as the control units to that of the full sample.
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3.3 Locally Weighted Estimation

The locally weighted regressions (LWR) approach is a commonly used non-parametric estima-

tion procedure in real estate and other spatial studies to allow for geographic heterogeneity in

regression parameters over space. In other words, this approach leads to the possibility of di�e-

rent marginal e�ects at each target point. The basic idea behind LWR is to assign higher weights

to observations near the target point when calculating a point speci�c estimate. The measure

of distance between observations has a natural geographic interpretation in spatial modeling.

Given a simple linear regression function, yi = β′xi+µi, for i = 1, · · · , n, the LWR estimate for

observation i is obtained simply by Weighted Least Squares (McMillen and Redfearn, 2010):

β̂i =

(
n∑
j=1

wijxjx
′
j

)−1( n∑
j=1

wijxjyj

)
,

where wij =
[
K
(
dij
b

)]1/2
with K(·) being the Gaussian kernel (although other kernel options

are sometimes used in the literature with little sensitivity in the results), b being the bandwidth

parameter, and dij being the geographic distance between observations i and j.

The LWR approach is readily extended to Maximum-Likelihood Estimation (MLE) methods

as well. While a typical MLE procedure chooses estimates to maximize the log-likelihood

function,
∑n

i=1 lnLi , the locally weighted version of MLE estimates a pseudo log-likelihood

function,
∑n

i=1wijlnLij, where the log-likelihood function depends on the functional form of

the regression model. See McMillen and McDonald (2004), for more details.

3.4 Incorporating Locally Weighted (LW) Estimation Into the IPT

Framework

We incorporate LW estimation into the IPT estimator from Graham et al (2012), in the following

way. We modify equations (2) and (3) by incorporating kernel weights (as in McMillen and

McDonald, 2004) and a bandwidth parameter. If the researcher believes that the potential

outcome function G(·) is a non-parametric function, then we could transform both t(·) and Di

with some kernel weights. More speci�cally, suppose one is interested in the �rst two moments.

8



Then, we denote τ(wijxi) = [1, wijxi, (wijxi)
2]′ as a column vector where the weight wij =[

K
(
dij
b

)]1/2
, with K(·) being the Gaussian kernel, b being the bandwidth parameter, and dij

being the geographic distance between observations i and j. This setup amounts to a non-

parametric speci�cation of the tilting parameter, δ0j and δ
1
j , as de�ned below.

We describe the moment generating functions for the treated and non-treated samples, and

then we discuss how one would compute the tilting parameters. Our IPT-LW discussion below

closely parallels parts of the IPT approach of Graham et al (2012).

First, for the jth unit in the treatment group, the locally weighted IPT estimator of δ,

denoted by δ̃1j , is a solution to:

1

N

N∑
i=1

 wijDi

G
(
τ(wijxi)

′ δ̃1j

) − 1

 τ(wijxi) = 0. (4)

Following the logic of Graham et al (2012), the propensity score for the ith unit in the treated

sample can be written as:

π̃1
j,i =

1

N

wij

G
(
τ(wijxi)

′ δ̃1j

) , i = N0 + 1, N0 + 2, · · · , N. (5)

These two equations imply:

N1∑
i=N0+1

π̃1
j,iτ(wijxi) =

1

N

N∑
i=1

τ(wijxi). (6)

Second, for the jth unit in the untreated group, the IPT-LW estimator of δ0, denoted as δ̃0j , is

the solution to:

1

N

N∑
i=1

 wij(1−Di)

1−G
(
τ(wijxi)δ̃0j

) − 1

 τ(wijxi) = 0, i = 1, · · · , N0.

Similarly, the propensity score for the ith unit in the control sample can be written as:

π̃0
j,i =

1

N

wij

1−G
(
τ(wijxi)

′ δ̃0j

) . (7)
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These two equations imply:

N0∑
i=1

π̃0
j,iτ(wijxi) =

1

N

N∑
i=1

τ(wijxi). (8)

In words, equation (6) states that after twice reweighing the mean and variance of xi across

treated units � once with the propensity score parameter and again with the geographic distance

weights � this equals the (geographically or locally weighted) mean and variance of xi over the

entire sample. An analogous relationship for the untreated sample and the entire sample is

in equation (8). Note that higher order moments can be included in τ(·), however this can

complicate the computational procedure.

The locally weighted IPT average treatment e�ect estimate for the jth unit is given by

γ̃IPT−LWj =
N∑

i=N0+1

π̃1
j,iYi −

N0∑
i=1

π̃0
j,iYi (9)

where π̃1
j,i and π̃

0
j,i are target point dependent and de�ned by (5) and (7).

Some discussion of the �ve IPT assumptions, 3.1 through 3.5, in the context of IPT-LW

estimation, is worthy of some attention. The ATE identi�cation strategy, Assumption 3.1, is

still relevant at each target point. In terms of random sampling (Assumption 3.2), for a given

target point j, the observations on the wijDi, wijxi, and Y1i are independent over all i. For data

missing at random, Assumption 3.3, the probability of being treated, conditional on wijxi, is

independent of the outcome of the treated sample. More formally, this assumption translates

into P (wijDi > 0|wijxi, Y1) = P (wijDi > 0|wijxi). The strong overlap assumption, 3.4, implies

that the probability of being treated, given any wijxi, should be positive. Finally, Assumption

3.5 still implies that there exists a unique propensity score parameter. Later we discuss how

these assumptions are satis�ed in our IPT-LW Monte Carlo Simulations and in our IPT-LW

empirical application.

Suppose, for computational simplicity, one allows G to take the Logit functional form, that

is, G(v) = exp(v)/[1 + exp(v)], and φv = 1/G(v). In terms of computation of δ̃hj , h = 0, 1, for

each target observation j, we solve the following optimization problem, adapted from equation
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(A.22) of Graham et al (2012), to incorporate spatial heterogeneity:

Choose δhj to max l(δhj ) = (1/N)
∑

iDiwijφ(τ(wijxi)
′δhj )�(1/N)

∑
iτ(wijxi)

′δhj

Substituting τ(wijxi) = [1, wijxi, (wijxi)
2] as de�ned above, this leads to the following revised

optimization problem:

Choose δhj to

max l(δhj ) = (1/N)
∑

iDiwijφ([1, wijxi, (wijxi)
2]′δhj )�(1/N)

∑
i[1, wijxi, (wijxi)

2]′δhj .

The �rst order condition for this optimization problem is:

∂(l(δhj ))/∂δ
h
j = (1/N)

∑
iDiwij[1, wijxi, (wijxi)

2]′φδ(·)�(1/N)
∑

i[1, wijxi, (wijxi)
2]′ = 0,

and the second order condition is:

∂2(l(δhj ))/(∂δ
h
j )

2 = (1/N)
∑

iDiwij[1, wijxi, (wijxi)
2]′[1, wijxi, (wijxi)

2]φδδ(·)

Graham et al (2012) show that in general, φδδ(·) < 0 (see their equation A.21), so that l is

strictly concave.

It should be reasonably straightforward to solve the optimization problem above (analogous

to equation A.22 in Graham et al, 2012) for δ̃hj for all j. A major di�erence between our IPT-LW

approach and the IPT approach is that the IPT-LW estimator will lead to separate parameter

estimates of δ̃hj , j = 1, · · · , N . These δ̃hj are what we would call our IPT-LW estimator. In

contrast, the IPT estimator leads to one estimate of δ̃hj , for all j. When there is no geographic

variation in cross sectional data, the estimates from IPT and IPT-LW should be identical, and

therefore the additional computational burden from IPT-LW would not yield any of the bene�ts

that may be present with geographic data.

With IPT-LW we estimate an ATE for each target observation. In footnote 21 of the

Appendix of Graham et al (2012), they describe the process for obtaining the overall ATE that

is based on the single treatment e�ect for each observation. Our approach to obtaining the ATE

for each target observation is similar to the overall ATE generation process outlined by Graham

et al (2012), but we modify the moments condition using τ(wijxi) instead of t(x) as shown

in equations 6 and 8 above. With IPT-LW, we obtain a very representative estimate of the

local treatment e�ect by generating an ATE for each target point, rather than generating one
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treatment e�ect for each target point and using these to calculate one overall ATE. In situations

where one knows the exact locations of the observations, we would expect that generation of

the separate ATEs for each observation would lead to a precise estimate of the ATE at each

location, and in turn, the overall average of the ATEs may have lower bias.

We next perform Monte Carlo simulations to demonstrate that the IPT-LW estimator per-

forms well in small samples.

4 Monte Carlo Study

In this Monte Carlo study we generate our response variables, yit, from the following causal

model and selection model:

yi = β0(gi) +DTi ·DSi · β1(gi) + x · β2(gi) + ui, (10)

DSi =


1 for g1i + 0.25× g2i > 1.25

0 for g1i + 0.25× g2i < 1.25

, i = 1, · · · , N (11)

DTi =


1 for i > N/2

0 for i ≤ N/2

, i = 1, · · · , N (12)

where (10) is the causal model that produces the response variable yi, (11) and (12) is the

selection model that produces the treatment group. If DSi equals 1, this indicates that the unit

is in the location where some observations are treated and 0 indicates being in the control group.

Also, DTi is a dummy such that a value of 1 indicates an observation is only possibly treated

after an unexpected event. Therefore, the treated sample will be comprised of the observations

for which Di = DTi × DSi = 1 ; in other words, the treated sample consists of those units

for which both DSi = 1 and DTi = 1. The vector gi = [g1i , g
2
i ] is a two-dimensional location

vector generated from a bi-variate uniform distribution between [0, 2] , ui is i.i.d. following a

standard normal distribution; xi is a random variable generated from the normal distribution

N [0, 3], and vi is i.i.d from the standard normal distribution. Additionally, for simplicity we

set β0(gi) = 0 and β2(gi) = 0.2, and β1(gi) , our main interest in the estimation, is a bi-variate
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standard normal density function:

β1(g) =
1
2π

exp
(

(g1i )
2+(g2i )

2

2

)
.

Note that given the identi�cation strategy and assumptions of this Monte Carlo setup, the

model speci�ed in (10) (11) and (12) complies with assumptions discussed in Graham et al

(2012). First, {Yi, Xi, Di}Ni=1are i.i.d. (the �random sampling� assumption). Second, P (Di =

1|Y,X) = P (Di = 1|X) (The �missing at random� assumption). Finally, P (Di = 1|X = x) =

P (Di = 1) > 0, as Di and X are independent in these data generating processes (The �strong

overlap� assumption).

We use two di�erent sample sizes, N = 300 and N = 600, as the number of individuals.

This model is estimated with OLS, IPT and IPT-LW as de�ned in section 2. For the IPT-

LW estimator, the optimal bandwidth for each sample size is calculated through a grid search.

For a grid of b values, the average squared error, ASE(b) = 1
N

∑N
i=1

{
γ̃j
IPT−LW − γIPT−LWj

}2
,

is computed for 100 replications and then averaged to estimate the mean ASE (MASE). The

function MASE(b) is then plotted over the grid values of b. The optimal bandwidth, bMASE, is

chosen to be the value of b that yields the minimum MASE value. One optimal bandwidth is

obtained for each sample size for the IPT-LW estimator. Next, using the optimal bandwidth for

each sample size, we perform 500 iterations for each sample size, and then compute the average

bias and ASE for each. The average bias and average squared errors are reported in Table 1.

In addition, in Figure 1 we also plot the distributions, with histogram and estimated density,

of the ASE results from the 500 repetitions on each estimator with two di�erent sample sizes.

Since some preliminary �nite sample experimental evidence on the performance of the IPT

estimator is already available (Graham et al, 2012), we are primarily interested in the perfor-

mance of the IPT-LW relative to estimators that do not account for geographic variation. There

are general regularities that are evident. As expected, increases in the sample size reduce the

ASE for all estimators, suggesting that the estimators under study converge with sample size.

Across both sample sizes, the IPT estimator performs at least as well as the OLS estimator,

in both ASE and average bias. Improvement of IPT-LW, as measured by ASE, over IPT and

OLS, ranges from 25% to 57%. The key implication of these results is that in situations where
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geographic variation is an important factor in the data, the proposed IPT-LW estimator provi-

des a simple but e�ective way to account for it. The ASE distribution plots in Figure 1 indicate

a similar pattern. For each of the three estimators, increases in the sample size from 300 to

600 generally shift the ASE distribution towards zero. When the three estimators are compared

with each other for the same sample size, the ASE distribution of IPT-LW are much closer to

zero than that of the other two estimators.

We also plot the IPT-LW estimated ATEs based on our simulations, in Figures 2a and

2c (separately for N=300 and N=600, respectively). The corresponding true ATEs for these

samples are plotted in Figures 2b and 2d, respectively. In comparing the IPT-LW ATEs against

the corresponding true ATEs, it is apparent that as the sample size increases from N=300 to

N=600, the IPT-LW ATEs more closely approximate the true ATEs. This implies that IPT-LW

is a consistent estimator of the true ATEs as the sample size increases.

Meanwhile, the simulation results suggest that IPT-LW should only be used instead of the

IPT estimator when the data include information about geographic location. One potential

alternative to IPT-LW when there is geographic information in the data might be including the

geographic location variables as control variables and using the IPT estimator. However, this

would violate the strong overlap assumption (Assumption 3.4 above) because having some of the

lower values of latitude, for instance, would place those observations in the control group and it

also would preclude having any overlap with the treated group. Therefore, we do not consider

including geographic location variables as control variables in the regular IPT estimator as a

viable alternative. Moreover, we attempt this in the simulations, and �nd that the IPT model

is unable to solve, which is not surprising given that Graham et al (2012) indicate this outcome

would be likely when the strong overlap assumption is violated.

5 Application: Commercial Real Estate Prices in the Vancouver, BC

Metro Area

The metro-Vancouver area was hit with a series of severe storms in November, 2006, which led

to severe mudslides that caused contaminated storm runo� to enter the water supply (Evans,
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2007). Some parts of the metro area were required to boil water for an extended period of 10 days

longer (i.e., 12 days total) than the rest of the metro area (CBC News, 2006). This impacted

restaurants, co�ee shops, and other water-dependent businesses (Dowd, 2006). The a�ected

area included the City of Vancouver, while the adjacent City of Richmond (and many other

parts of the metro area) had the advisory lifted on the second day. We examine how sale prices

for properties that sold within several months after this advisory in a section of Vancouver (the

treated sample) were a�ected di�erently from other properties sold in Vancouver several months

before the advisory and properties that sold in nearby parts of Richmond before and after the

advisory (the control sample). Thus, our identi�cation strategy relies upon an unexpected event

(the extended water boil advisory) that a�ects some geographic areas but not others. We have

a missing data issue with this data set, because we know what properties in the control group

sold for, but we do not know what these properties would have sold for if they had been in

the treatment group. Thus, some sort of adjustment using a propensity score approach would

be desirable. Meanwhile, there are clear di�erences in the geographic locations of properties

in our sample. It is of interest to determine empirically how the e�ects of such a shock might

be absorbed di�erently into property values across locations. Therefore, we consider three

di�erent approaches in this application in order to address the missing data problem, OLS, the

IPT approach, and IPT-LW.

There is a literature that examines the e�ects of a storm on property values, including Bin et

al (2013), Atreya and Czajkowski (2016), and others. None of this literature, however, considers

the missing data problem in the same context or with the same approach as we are addressing

it here. Also, most of the other studies in the literature focus on residential property values,

while our study examines the commercial property value impacts. Finally, we are not directly

interested in the impact of the storms in the entire metro Vancouver area in November 2006;

rather, we study the e�ects of a water boil advisory that was imposed on some areas of the metro

area, including the City of Vancouver, for much longer than others. Therefore, we can examine

the di�erential impacts of the water boil advisory on treated versus control areas, shortly before

versus shortly after the advisory. This is our identi�cation strategy.

It is widely accepted in the real estate �nance and investments literature (e.g., Ling and
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Archer, 2017), that a commercial property's value or sale price equals the ratio of its net

operating income (NOI) to the capitalization rate (i.e., cap rate or discount rate). In theory, if

there is an event that alters an investor's estimate of basic long term risk, then an increase in

discount rate seems appropriate. In some cities, such as New Orleans, a major hurricane such

as Katrina led to property destruction as well as major disruption in abilities of businesses to

operate for an extended period of time. This increased risk likely led to a higher cap rate, due

to the possibilities of repeat storm events in the future, which lowered the value of commercial

properties. While people may have revised their estimate of New Orleans' vulnerability because

of rising sea levels, eroded barrier marshes, etc, and di�culties in raising the levies to avoid

future storms, the case of Vancouver was somewhat di�erent. In other words, it is less likely that

there was a risk adjustment because shortly after the 2006 storm, there were e�orts completed

to enhance the sewer systems to prevent future storms from causing similar problems that led

to the water boil advisory in late 2006. Speci�cally, the resulting water boil advisory was not a

permanent event, so therefore it did not alter estimates of basic long term risk. However, this

12 day water boil advisory in the city of Vancouver caused major disruption of some business

operations, especially for those that were water-oriented such as supermarkets, restaurants, day

care facilities, etc (Dowd, 2006; CBC News, 2006). Such a disruption can be expected to lead to

lost revenues or additional costs, for instance, for certain businesses that are water dependent.

These characteristics can be expected to impact their NOI, which translates into an e�ect on

property values and in turn, the sale prices of many properties. But other commercial properties

sale prices were not a�ected, perhaps because they may not have been as water dependent. The

cap rate is less likely to vary much within a metro area at a given point in time. But clearly

the NOI should vary across properties.

When we are estimating the ATE of the water boil advisory on the price per square foot

of commercial properties, the lot size of the property is expected to be negatively correlated

with the NOI (and the total sale price). This is due to the fact that a larger lot size requires

higher expenses for lawn maintenance and snow removal, for instance. But the e�ect of lot size

on the price per square foot may be either positive or negative. A larger lot size may or may

not lead to economies of scale that are inherent in the maintenance of a commercial building.
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Greater economies of scale lead to higher NOI and therefore a higher price per square foot of

the overall property. There also may be particularly strong price e�ects for older properties,

or properties that have not been renovated recently. These older properties may be expected

to rent for less, need more repairs, and require more to upkeep due to unanticipated issues

resulting from the age of the property. This can also be expected to factor into the NOI for a

property. In other words, an older property, or one that has not been renovated recently, should

have a lower NOI than a similar, nearby property that has been renovated recently. Therefore,

it is important to use the lot size and the e�ective age as a proxies for NOI. The e�ective age

is the number of years between the year of most recent sale and the last major renovation of

a property. Properties that were renovated in the year in which they were most recently sold

have an e�ective age of 0. Similarly, properties that have never been renovated have an e�ective

age equal to the actual age of the property. In our model speci�cations, we use as the control

variable the interaction term of lot size (in thousand square feet) and the e�ective age of the

property (in years). For reasons described above, these two variables are the two best proxies

for NOI that we have available to us. Also, in the IPT and IPT-LW speci�cations, when we try

to include two separate controls for these two variables, using the �rst two moments of each, the

model is unable to solve. We are interested in the treatment e�ect from the extended water boil

advisory, and we desire to control for the lot size and e�ective age as proxies for NOI but are

not directly interested in their marginal e�ects. Therefore, using the interaction term enables

us to control for both of these factors as proxies for NOI. Finally, Graham et al (2011) and

Anderson (1982) suggest interaction terms be included. So we use the �rst two moments of the

interaction term as controls in the IPT and IPT-LW speci�cations. For consistency, we use the

interaction term in the OLS speci�cation as well. In an attempt to avoid the potential problem

of confounding factors that could be prevalent in other parts of the metro Vancouver area, we

restrict our attention to a section of the metro area where some observations are in the City of

Vancouver (which was subject to the water boil advisory for 12 days) and others in nearby parts

of the neighboring City of Richmond (which had the water boil advisory lifted after one day).

We avoid including properties in the central business district of Vancouver, where there are

potentially many other confounding factors. We focus on a period of several months before, and
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several months after the 12 day water boil advisory which occurred for the City of Vancouver

in November 2006. We end our sample in August 2007 because we want to avoid the e�ects of

the recession that started in late-2007, and we begin in January 2006 because we want to avoid

other events that might have impacted property values before 2006.

In our data set, there are 100 commercial sales observations in the selected neighborhoods

between January 2006 and August 2007 for which there are also data on the building sale price,

square footage, lot size and the e�ective age. For this reason, our sample focuses on these 100

observations. Figure 4 shows the locations of our sample of 100 commercial properties (for which

we have usable data) that sold (as arms-length transactions) in parts of the City of Vancouver

and City of Richmond between January 2006 and August 2007. These data are from the BC

Assessment database, which were purchased from Landcor.

Descriptive statistics are presented in Table 2. The average commercial property sold for

approximately C$ 211 per square foot, had a lotsize of 36,000 square feet, had an e�ective age

of 28.36 years (i.e., there were 28.36 years since the last major renovation), and 25 percent of

the observations were in the treatment group (i.e., in the City of Vancouver - opposed to the

City of Richmond - and sold after the extended water boil advisory was imposed on the City of

Vancouver).

We �rst estimate the following OLS model: Yi = b0 + b1Xi + b2Di + e, where Yi is price per

square foot for property i, Xi is the product of the lot size and the e�ective age. We assume

that e is an i.i.d. error term with mean 0 and constant variance, and E(eiej) = 0 for i 6= j.

Di = 1 for properties in our dataset that sold between November 2006 and August 2007 in the

City of Vancouver (i.e., after the water boil advisory), and Di = 0 for properties that sold in the

City of Richmond before and after the advisory, and those properties that sold in Vancouver

before the advisory. The regression coe�cient b2 is the �treatment e�ect� of locating in the City

of Vancouver after the storm.

The second model we estimate is the IPT model, where t(x) = [1, X,X2], and X is the

product of the lot size and e�ective age, and Y is the sale price per square foot. We are

reweighing the X's so that the sample mean and variance of X in the treated sub-sample (and

separately, in the untreated subsample) equals the entire sample mean and variance of X. Once
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again, we utilize the same data set as we used for OLS estimation. We then calculate the ATE

based on the IPT estimator.

Finally, we estimate an IPT-LW model, with Gaussian kernel weights given as wij =

[exp(−0.5 ∗ (dij/b)2)]1/2, where dij is the Euclidean distance between properties i and j, and b

is a bandwidth parameter. We explain the bandwidth parameter determination in more detail

below. In the IPT-LW model, we use τ(wijX) = [1, wijX, (wijX)2] for each target point, j. In

this context, we are reweighting by including distance weights in the propensity score weighted

averages of X so that the reweighted mean and variance of X for the treated sample equals the

reweighted mean and variance for the entire sample.

We present the results of the OLS and the IPT estimations in Tables 3 and 4. First, we

regress the sale price per square foot against a constant, the treatment dummy, and the product

of the e�ective age and the lot size (for consistency with the IPT and IPT-LW estimations,

we retain this interaction term here). The treatment dummy, Di, has a coe�cient estimate

of b2 = −28.89, implying that the typical commercial property in the treated sample sold for

approximately C$ 28.89 less per square foot than the typical property in the control sample.

Also, b2 is highly insigni�cant (P-value=0.456). With IPT, the ATE is estimated to be C$ -35.55

(with P-Value=0.134), and with a standard error that is somewhat lower than the corresponding

OLS standard error (C$ 23.70 opposed to C$ 38.55). This smaller estimated standard error for

the IPT estimator is in line with our expectations based on our earlier Monte Carlo simulations

results.

With the IPT-LW estimation approach, we �rst must determine which bandwidth to use

in the estimation process. We �rst consider a �Rule of Thumb� bandwidth, as in Silverman

(1986). However, this bandwidth selection criterion requires normality of the distances data in

order for it to be applicable. Examining the Jarque-Bera statistics demonstrate that there is

no supporting evidence for a symmetric distribution; in fact, nearly half of the distance vectors

consist of observations that are skewed based on the Jarque-Bera normality test. Therefore, we

estimate integer bandwidths in the range of 4 (km) through 12 (km), while integer bandwidths

smaller than 4 cause di�culties in the IPT-LW estimations that preclude it from solving. We

choose the smallest of these bandwidths, which was b=4. This allows for the maximum amount
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of variation in the parameter estimates. In fact, as we increase the bandwidth, the variation in

the ATE estimates from IPT-LW across observations decreases dramatically, in general appro-

aching the ATE estimate from IPT for the higher bandwidths. This result is expected, as with

a higher bandwidth there are more observations receiving positive weight than with a lower

bandwidth, so the IPT-LW ATE estimates with the higher bandwidths closely approximate the

IPT ATE estimate.

In terms of the IPT-LW variants of the �ve IPT assumptions that we describe in section

3.4 above, it is reasonable that our dataset and application satisfy these assumptions. First, we

rely on an identi�cation strategy that considers properties that sold inside and outside of the

water boil advisory zone, in a reasonably short timeframe before versus after the advisory date.

We assume that we have random sampling for our dataset. Speci�cally, one might argue that

the kernel weights imply two properties, i and j, with a high wij (i.e., properties close to each

other) are necessarily treated. But this is not the case, as can be seen in Figure 4. Properties on

the south side of the Frasier River are in Richmond (untreated), while those just to the north

are in Vancouver. Also, any given pair of properties in Vancouver that are close to each other

are not necessarily both treated, because some of the nearby properties sold before the advisory

and were therefore untreated. For our control variables, the interaction of e�ective age and

lotsize, it is reasonable to assume that nearby observations have no impact on the value of these

two variables at a particular target point. We have data missing at random, as we know what

properties sold for at their location but not what they would have sold for at other locations.

We also have strong overlap, since there are some older and younger properties, as well as some

larger and smaller lotsize properties, in both the treated and untreated samples. Finally, there

is a unique propensity score estimated for each target point.

We next estimate the ATEs for all target points, j, using the IPT-LW estimator that we

have developed in this paper. Figure 4 shows a map of the metro-Vancouver area with the

locations of the sample of commercial properties that sold in the period of our sample, and the

estimated ATE for each property. The range of the ATEs for the 100 observations is C$ -8.45

to approximately C$ -55.05 , but the former ATE has a relatively large standard error and is

statistically insigni�cant. We take the average of all of the 100 ATEs (which we denote as the
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�AATE�), in Table 5. In this context, the AATE equals approximately C$ -30.79, while the

average of the standard errors is C$ 22.43. In general, the properties with the most negative

and signi�cant ATEs are located in the central and south areas of Richmond, while those

with statistically insigni�cant ATEs are elsewhere. There are no properties with statistically

signi�cant ATEs in Vancouver.

The e�ects of this 12 day water boil advisory are expected to be relatively small. While

the ATE from OLS and IPT are statistically insigni�cant, with IPT-LW we �nd that all 100

observations have negative ATEs, but 13 out of the 100 observations have statistically signi�cant

ATEs (with P-value<0.05). Thus, using IPT-LW enables us to unmask which speci�c locations

would be signi�cantly impacted by the water boil advisory. With IPT-LW, the ATEs are

estimated based on the properties surrounding it or close by. The ATEs from IPT-LW are small

in terms of the numbers of properties impacted, and we can determine where these properties are

located. Interestingly, all of these properties with signi�cantly negative ATEs are concentrated

in 5 distinct neighborhoods of Richmond (which did not experience the 12-day extended water

boil advisory). The IPT-LW approach tends to imply there will be similar ATEs for properties

nearby each other, therefore we might expect that the ATE with IPT should be bigger than

many of the ATEs from IPT-LW because IPT estimates the ATE based on the entire sample

and does not down-weight for distant observations. This may also be an explanation for why

the properties with signi�cant ATEs are clustered together. Another explanation is the lot

size. Many properties in the Vancouver part of our sample (some of which are in the treatment

group) are located on very small lots, while those properties in Richmond (which consists of a

subset of the control group) have larger lots. This has implications for re-weighting with the

propensity scores, as one aspect of this is that the IPT-LW procedure re-weights based on the

mean and variance of the geographically weighted product of the lot size and e�ective age of

the properties. This heterogeneity in lot size across space can clearly impact the ATEs.

Finally, within each of these 5 neighborhoods of Richmond, at least one (and sometimes

several) of the properties are in a water-intensive industry. For instance, in a neighborhood

around Horseshoe Way in the southern part of Richmond, there is a company that manufac-

tures liquid cleaning products and health/beauty products. Nearby there is a recycling center
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and a millworks production company. While we expect the ATE of the liquid product manu-

facturing company to be a�ected by an extended water boil advisory, the ATE of the other two

companies in the same neighborhood are likely to be impacted by their proximity to the liquid

product manufacturing company. About 0.5 km south of this neighborhood is another cluster of

properties with signi�cantly negative ATEs, including a company that processes �sh products

for use as fresh and preserved bait; nearby there is a produce market that undoubtedly relies on

water to clean its produce; and an event planning company. In this situation, the �sh products

store and produce market may have a strong impact on the ATE of the event planning company

due to its close proximity. Approximately 3 km north of this neighborhood, there is a daycare

facility with a signi�cantly negative ATE, which relies daily on clean water for the children and

sta� to wash hands, dishes, etc. There are no other commercial properties in our sample that

sold near this daycare facility. Approximately 2 km to the northwest is a restaurant/bakery, and

an o�ce building. In this case, the restaurant/bakery clearly would be impacted by an extended

water boil advisory, while the ATE of the o�ce building may be impacted due to the proximity

to the restaurant/bakery. Finally, approximately 0.5 km north of the restaurant/bakery there is

a cluster of 4 other properties that have statistically signi�cant (negative) ATEs. These include

a large shopping plaza with restaurants, a co�ee shop, doctor's o�ces, a drug store, and other

o�ces. Very close to this shopping plaza is an automobile repair garage, a dermatology o�ce,

and an o�ce building. It is likely that the water dependency of many of the businesses in the

shopping plaza is one explanation for a signi�cantly negative ATE for that property, while the

signi�cantly negative ATEs for the other nearby properties may be at least in part determined

by proximity to the shopping plaza.

One might conjecture that some of the di�erences in ATEs in the treated area (in the City

of Vancouver after the boil water advisory) versus the control area (in the City of Richmond

before the boil water advisory, and both Richmond and Vancouver before the advisory) may be

due to di�erences in property tax rates in the two cities in these two years. We analyzed the

property tax rates in these two cities in 2006 and 2007, and found that the 2006 base rate in

Richmond for class 6 properties (commercial) was C$ 22.38361 per thousand dollars of assessed

values. There were some additional add-ons for sewer debt, which ranged between C$ 0.23300
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and C$ 0.28300 in 2006, implying a total tax rate in the range of approximately C$ 22.64 per

thousand dollars of assessed value. There is an additional parking tax for Richmond properties

with parking, at a rate of C$ 0.78 per square meter of parking spaces. The 2007 tax rate in

Vancouver for Class 6 properties (commercial) was C$ 24.87171. Therefore, there is a di�erence

of approximately C$ 2.23 per thousand dollars of assessed value. Assuming this di�erential is

expected to persist inde�nitely into the future (i.e., an in�nite time horizon), and a discount

rate of 5%, this implies a di�erence of C$ 2.23*(1+0.05)/0.05 over the life of the property, or a

total expected property tax di�erential of C$ 46.83 per thousand dollars of assessed value. We

assume the sale price of a property is highly correlated with its assessed value. Then, if the

ATE is C$ -45 for a property that sold in Richmond before the water boil advisory in 2006, for

instance, then C$ 2.10 of this C$ -45, or less than 5% of the ATE, can be attributed to expected

di�erences in property taxes in the two jurisdictions in the two years.

Finally, one might argue that a fuzzy regression discontinuity framework could be appropriate

for this particular problem, as in Angrist and Pischke (2009). But this is not the case in our

speci�c application. The propensity score,

p(x) = Pr(Di = 1|Xi = x) = E[Di|Xi = x],

does not necessarily jump at any particular value of x. There are both large and small lot

sizes in our sample of properties in Richmond and Vancouver, and also there are both old and

new properties in both cities as well (as required by the strong overlap assumption of IPT).

Therefore, our X, the interaction term of lot size and e�ective age, does not have a natural

jump point in the probability of treatment at any speci�c value of x. In future work, it may be

of interest to explore how to address potential fuzzy regression discontinuity in the context of

IPT and IPT-LW, for speci�c applications where at particular values of x there is a jump point

in the propensity score.
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6 Conclusion/Discussion

We develop an IPT-LW estimator that can be a useful technique to generate ATEs for each

geographic location, and reweight propensity score estimates when there is missing data, given

information on the geographic locations of the observations. There are several bene�ts, as well

as some potential limitations, of the IPT-LW approach. One advantage of IPT-LW is that we

are able to generate local ATE estimates for each target point across locations. We can also test

for the statistical signi�cance of each of the ATEs. The average of the ATE's, or the AATE, is

one way of summarizing this information over all observations, if so desired. In our application,

one may be particularly interested in the ATE estimates that are statistically signi�cant, in

order to determine where remediation should be undertaken to prevent similar damage to the

water supply in the future. There are many other potential missing data problem applications

of the IPT-LW estimator where it would be desirable to generate local ATEs.

Another advantage of IPT-LW, as demonstrated by our Monte Carlo simulations, is that the

bias and average squared errors of the IPT-LW estimator tends to be lower than the bias for

the OLS and IPT estimators. However, this is only expected to hold if the data points exhibit

geographic heterogeneity; otherwise, there is no advantage to using IPT-LW over IPT, and in

fact, the additional computation time for IPT-LW would be a major drawback. Even when

there is spatial variation in the data, IPT-LW is a more computationally intensive procedure

and in some cases this may diminish its feasibility, especially in very large samples. However, one

potential remedy to this curse of dimensionality is to consider some type of quantile regression

approach in the context of IPT-LW, which is beyond the scope of this paper. The issue of

bandwidth selection also needs to be addressed based on the speci�c context of a given empirical

application when using the IPT-LW framework. But as we have demonstrated in our application

where there is information on the locations of the observations, the IPT-LW approach can

extract important information about which individual observations have statistically signi�cant

ATEs, and it allows for heterogeneity in ATEs across space.

Clearly, there are advantages and disadvantages of both the IPT and IPT-LW approaches to

addressing the missing data problem in generating heterogeneous estimates of ATE's. However,
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in general, it is also clear that both IPT and IPT-LW are superior to OLS. IPT and IPT-LW

perform better than OLS in our Monte Carlo simulations, and this is to be expected, in part

because OLS ignores the missing data problem.

In future work, it would be of interest to consider modifying the IPT-LW framework to

contexts where there is a balanced panel (space-time), to address a broader array of applied

missing data problems. Such an extension could also contribute to the literature on treatment

e�ect heterogeneity by allowing for the possibility that the ATE could vary over both geographic

space and over a long period of time. This may �rst necessitate extension of the regular IPT

framework to a balanced panel data setting, as well as generating Monte Carlo evidence to

validate the performance of the approach.
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A Figures

Figure 1: Average Squared Errors (ASE) Distributions From Simulations with 500 Repetitions
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Figure 2: Simulations: The True ATEs and The IPT-LW Estimated ATEs
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Figure 2a: ATEs from IPT-LW Simulations, N=300
(results shown for first four iterations, 1200 total target points, b=0.85)
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Figure 2b: True ATEs from Simulations, N=300
(results shown for first four iterations, 1200 total target points)
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B Tables

Table 1: Simulation Results - Small Sample Performances for IPT-LW, IPT and OLS1

IPT-LW IPT OLS

Sample Size = 600

Bias -0.007421 0.040871 0.0409438

ASE 0.002532 0.005879 0.005884

Sample Size = 300

Bias 0.004654 0.042592 0.042613

ASE 0.004632 0.006193 0.006189

1 The bandwidth used for IPT-LW is 0.75 with N=600 and 0.85 with N=300. See section 4 for more details
for bandwidth selection algorithm.
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